Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly.

Chun-Song Yang, Kasey Jividen, Teddy Kamata, Natalia Dworak, Luke Oostdyk, Bartlomiej Remlein, Yasin Pourfarjam, In-Kwon Kim, Kang-Ping Du, Tarek Abbas, Nicholas E Sherman, David Wotton, Bryce M Paschal
Author Information
  1. Chun-Song Yang: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  2. Kasey Jividen: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  3. Teddy Kamata: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  4. Natalia Dworak: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  5. Luke Oostdyk: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA. ORCID
  6. Bartlomiej Remlein: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  7. Yasin Pourfarjam: Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA.
  8. In-Kwon Kim: Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ORCID
  9. Kang-Ping Du: Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA.
  10. Tarek Abbas: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  11. Nicholas E Sherman: W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Charlottesville, VA, USA.
  12. David Wotton: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
  13. Bryce M Paschal: Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA. paschal@virginia.edu. ORCID

Abstract

Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.

References

  1. Nat Immunol. 2016 Jun;17(6):687-94 [PMID: 27089381]
  2. Annu Rev Biochem. 2015;84:227-63 [PMID: 25747399]
  3. Nat Rev Cancer. 2015 Dec;15(12):701-11 [PMID: 26563462]
  4. Nat Rev Clin Oncol. 2018 Sep;15(9):564-576 [PMID: 29955114]
  5. Genes Dev. 2020 Mar 1;34(5-6):285-301 [PMID: 32029453]
  6. Nat Genet. 2010 Oct;42(10):874-9 [PMID: 20852632]
  7. J Biol Chem. 1999 Dec 24;274(52):37219-25 [PMID: 10601285]
  8. Biochemistry. 1997 Feb 4;36(5):1052-64 [PMID: 9033395]
  9. Biochim Biophys Acta Gene Regul Mech. 2018 Nov;1861(11):983-995 [PMID: 30312684]
  10. Elife. 2017 Jun 26;6: [PMID: 28650317]
  11. J Biol Chem. 2003 Jun 13;278(24):21930-7 [PMID: 12670957]
  12. Expert Opin Ther Targets. 2015;19(9):1149-52 [PMID: 26212149]
  13. Cell Rep. 2018 Aug 28;24(9):2493-2505.e4 [PMID: 30157440]
  14. Biochem J. 2018 Dec 11;475(23):3827-3846 [PMID: 30373764]
  15. Methods Mol Biol. 2017;1608:79-93 [PMID: 28695505]
  16. J Biol Chem. 2008 Apr 18;283(16):10764-72 [PMID: 18238776]
  17. J Endocrinol. 2012 Nov;215(2):221-37 [PMID: 22872761]
  18. Cancer Cell. 2010 Jul 13;18(1):11-22 [PMID: 20579941]
  19. EMBO J. 2005 Jun 1;24(11):1911-20 [PMID: 15902274]
  20. Sci Signal. 2017 May 23;10(480): [PMID: 28536297]
  21. Exp Ther Med. 2016 Jun;11(6):2277-2283 [PMID: 27284311]
  22. Structure. 2013 Mar 5;21(3):462-75 [PMID: 23473667]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. Nature. 2005 Apr 14;434(7035):917-21 [PMID: 15829967]
  25. EMBO J. 2011 May 20;30(13):2719-33 [PMID: 21602788]
  26. J Cell Sci. 2013 May 1;126(Pt 9):1969-80 [PMID: 23487038]
  27. Mol Cell Biol. 2006 Jul;26(14):5348-59 [PMID: 16809771]
  28. Am J Pathol. 2012 Nov;181(5):1585-94 [PMID: 23083832]
  29. Mol Cell Biol. 2013 Feb;33(4):845-57 [PMID: 23230272]
  30. Nature. 2005 Apr 14;434(7035):913-7 [PMID: 15829966]
  31. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  32. J Med Chem. 2017 Feb 23;60(4):1262-1271 [PMID: 28001384]
  33. J Biol Chem. 2015 Jul 3;290(27):16824-40 [PMID: 25975270]
  34. BMC Cancer. 2018 Oct 10;18(1):960 [PMID: 30305041]
  35. Blood. 2000 Dec 15;96(13):4328-34 [PMID: 11110709]
  36. Trends Endocrinol Metab. 2004 Nov;15(9):411-7 [PMID: 15519887]
  37. Cell. 2017 Apr 6;169(2):183 [PMID: 28388401]
  38. Methods. 2019 Mar 15;157:106-114 [PMID: 30419335]
  39. J Steroid Biochem Mol Biol. 1999 Apr-Jun;69(1-6):307-13 [PMID: 10419007]
  40. Trends Biochem Sci. 2021 Feb;46(2):113-123 [PMID: 33008689]
  41. Nat Methods. 2013 Oct;10(10):981-4 [PMID: 23955771]
  42. Mol Cell. 2017 May 18;66(4):503-516.e5 [PMID: 28525742]
  43. Annu Rev Biochem. 2016 Jun 2;85:431-54 [PMID: 26844395]
  44. Nucleic Acids Res. 2014 Jul;42(13):8310-9 [PMID: 24981513]
  45. Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
  46. Mol Cell Endocrinol. 2012 Apr 16;352(1-2):70-8 [PMID: 21820033]
  47. Mol Cell. 2016 Feb 4;61(3):474-485 [PMID: 26833088]
  48. Biochem J. 2016 Apr 1;473(7):899-910 [PMID: 26814197]
  49. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  50. Methods Enzymol. 1997;280:275-87 [PMID: 9211323]
  51. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W281-7 [PMID: 22638583]
  52. Mol Cell Biol. 2007 May;27(9):3390-404 [PMID: 17325038]
  53. Endocr Relat Cancer. 2007 Dec;14(4):1007-19 [PMID: 18045952]
  54. Methods Mol Biol. 2019;1966:107-124 [PMID: 31041742]
  55. Nat Immunol. 2015 Dec;16(12):1215-27 [PMID: 26479788]
  56. Mol Cancer. 2014 May 27;13:125 [PMID: 24886089]
  57. Mol Cell. 2004 Nov 5;16(3):425-38 [PMID: 15525515]
  58. Chem Rev. 2005 Sep;105(9):3352-70 [PMID: 16159155]
  59. Mol Cell. 2015 Jun 18;58(6):902-10 [PMID: 26091339]
  60. Mol Cell. 2009 Oct 9;36(1):110-20 [PMID: 19818714]

Grants

  1. R01 CA214872/NCI NIH HHS
  2. R01 GM135376/NIGMS NIH HHS
  3. T32 CA009109/NCI NIH HHS

MeSH Term

ADP-Ribosylation
Adenocarcinoma
Antineoplastic Agents
Cell Line, Tumor
Gene Expression Regulation, Neoplastic
Humans
Male
Metribolone
Neoplasm Proteins
Phthalazines
Piperazines
Poly (ADP-Ribose) Polymerase-1
Poly(ADP-ribose) Polymerase Inhibitors
Poly(ADP-ribose) Polymerases
Prostatic Neoplasms
Protein Isoforms
Protein Processing, Post-Translational
Receptors, Androgen
Signal Transduction
Survival Analysis

Chemicals

AR protein, human
Antineoplastic Agents
Neoplasm Proteins
PARP9 protein, human
Phthalazines
Piperazines
Poly(ADP-ribose) Polymerase Inhibitors
Protein Isoforms
Receptors, Androgen
Metribolone
PARP1 protein, human
PARP2 protein, human
Poly (ADP-Ribose) Polymerase-1
Poly(ADP-ribose) Polymerases
olaparib

Word Cloud

Similar Articles

Cited By