High-intensity focused ultrasound (HIFU) is a non-invasive tool that can be used for targeted thermal ablation treatments. Currently, HIFU is clinically approved for treatment of uterine fibroids, various cancers, and certain brain applications. However, for brain applications such as essential tremors, HIFU can only be used to treat limited areas confined to the center of the brain because of geometrical limitations (shape of the transducer and skull). A major obstacle to advancing this technology is the inability to treat non-central brain locations without causing damage to the skin and/or skull. Previous research has indicated that cavitation-induced bubbles or microbubble contrast agents can be used to enhance HIFU treatments by increasing ablation regions and shortening acoustic exposures at lower acoustic pressures. However, little research has been done to explore the interplay between microbubble concentration and pressure amplitude on HIFU treatments. We developed an in vitro experimental setup to study lesion formation at three different acoustic pressures and three microbubble concentrations. Real-time ultrasound imaging was integrated to monitor initial microbubble concentration and subsequent behavior during the HIFU treatments. Depending on the pressure used for the HIFU treatment, there was an optimal concentration of microbubbles that led to enhanced heating in the focal area. If the concentration of microbubbles was too high, the treatment was detrimentally affected because of non-linear attenuation by the pre-focal microbubbles. Additionally, the real-time ultrasound imaging provided a reliable method to monitor microbubble activity during the HIFU treatments, which is important for translation to in vivo HIFU applications with microbubbles.
Med Phys. 1989 Jul-Aug;16(4):618-26
[PMID:
2549354]
Ann Neurol. 2009 Dec;66(6):858-61
[PMID:
20033983]
Ultrasound Med Biol. 1991;17(2):157-69
[PMID:
2053212]
Ultrasound Med Biol. 2006 Jul;32(7):1103-10
[PMID:
16829324]
J Control Release. 2015 Jan 10;197:20-8
[PMID:
25449801]
N Engl J Med. 2016 Aug 25;375(8):730-9
[PMID:
27557301]
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Oct;50(10):1296-304
[PMID:
14609069]
Ultrasound Med Biol. 2001 May;27(5):695-708
[PMID:
11397534]
Radiology. 2006 Oct;241(1):95-106
[PMID:
16990673]
Invest Radiol. 2020 Oct;55(10):643-656
[PMID:
32898356]
Phys Med Biol. 2008 Sep 7;53(17):4759-76
[PMID:
18701773]
Ultrasound Med Biol. 2005 Oct;31(10):1383-9
[PMID:
16223642]
Biomaterials. 2011 Dec;32(34):9128-35
[PMID:
21868088]
Phys Med Biol. 2003 Jan 21;48(2):223-41
[PMID:
12587906]
J Ther Ultrasound. 2014 May 31;2:11
[PMID:
25512869]
Ultrasound Med Biol. 1997;23(2):299-306
[PMID:
9140186]
Ultrasound Med Biol. 2020 Mar;46(3):498-517
[PMID:
31813583]
Eur Radiol. 2006 Jul;16(7):1557-63
[PMID:
16541226]
J Neurosurg. 2016 Dec;125(6):1539-1548
[PMID:
26848919]
J Ther Ultrasound. 2016 Feb 13;4:5
[PMID:
26877873]
Phys Med Biol. 2013 Sep 21;58(18):6541-63
[PMID:
24002637]
Eur Radiol. 2005 Jul;15(7):1415-20
[PMID:
15739112]
Urol Res. 2004 Feb;32(1):14-9
[PMID:
14655029]
J Acoust Soc Am. 2005 Dec;118(6):3595-606
[PMID:
16419805]
Ultrasound Med Biol. 2001 Oct;27(10):1399-412
[PMID:
11731053]
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1144-1154
[PMID:
33112743]
Neurosurg Focus. 2012 Jan;32(1):E1
[PMID:
22208894]
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Oct;52(10):1690-8
[PMID:
16382620]
Ultrasound Med Biol. 2014 Sep;40(9):2217-30
[PMID:
25023101]
J Ultrasound Med. 2012 Apr;31(4):623-34
[PMID:
22441920]
Int J Hyperthermia. 1998 Sep-Oct;14(5):495-502
[PMID:
9789772]
Ultrasound Med Biol. 2004 Oct;30(10):1419-22
[PMID:
15582242]
Ultrasound Med Biol. 2010 Feb;36(2):306-12
[PMID:
20045592]
AJR Am J Roentgenol. 2008 Jan;190(1):191-9
[PMID:
18094311]
Lancet Neurol. 2013 May;12(5):462-8
[PMID:
23523144]
Parkinsons Dis. 2015;2015:219149
[PMID:
26421209]