A specific low-density neutrophil population correlates with hypercoagulation and disease severity in hospitalized COVID-19 patients.

Samantha M Morrissey, Anne E Geller, Xiaoling Hu, David Tieri, Chuanlin Ding, Christopher K Klaes, Elizabeth A Cooke, Matthew R Woeste, Zachary C Martin, Oscar Chen, Sarah E Bush, Huang-Ge Zhang, Rodrigo Cavallazzi, Sean P Clifford, James Chen, Smita Ghare, Shirish S Barve, Lu Cai, Maiying Kong, Eric C Rouchka, Kenneth R McLeish, Silvia M Uriarte, Corey T Watson, Jiapeng Huang, Jun Yan
Author Information
  1. Samantha M Morrissey: Department of Microbiology and Immunology.
  2. Anne E Geller: Department of Microbiology and Immunology.
  3. Xiaoling Hu: Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center.
  4. David Tieri: Department of Biochemistry and Molecular Genetics.
  5. Chuanlin Ding: Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, James Graham Brown Cancer Center.
  6. Christopher K Klaes: Department of Oral Immunology and Infectious Diseases, School of Dentistry.
  7. Elizabeth A Cooke: Department of Anesthesiology and Perioperative Medicine.
  8. Matthew R Woeste: Department of Microbiology and Immunology.
  9. Zachary C Martin: Department of Anesthesiology and Perioperative Medicine.
  10. Oscar Chen: Department of Anesthesiology and Perioperative Medicine.
  11. Sarah E Bush: Department of Anesthesiology and Perioperative Medicine.
  12. Huang-Ge Zhang: Department of Microbiology and Immunology.
  13. Rodrigo Cavallazzi: Division of Pulmonary, Critical Care and Sleep Disorders, Department of Medicine.
  14. Sean P Clifford: Department of Anesthesiology and Perioperative Medicine.
  15. James Chen: Department of Anesthesiology and Perioperative Medicine.
  16. Smita Ghare: University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology.
  17. Shirish S Barve: University of Louisville Hepatobiology and Toxicology Center, Departments of Medicine and Pharmacology & Toxicology.
  18. Lu Cai: Pediatric Research Institute, Department of Pediatrics.
  19. Maiying Kong: Department of Bioinformatics and Biostatistics.
  20. Eric C Rouchka: Department of Computer Science and Engineering, and.
  21. Kenneth R McLeish: Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
  22. Silvia M Uriarte: Department of Oral Immunology and Infectious Diseases, School of Dentistry.
  23. Corey T Watson: Department of Biochemistry and Molecular Genetics.
  24. Jiapeng Huang: Department of Anesthesiology and Perioperative Medicine.
  25. Jun Yan: Department of Microbiology and Immunology.

Abstract

SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.

Keywords

References

  1. J Clin Invest. 2019 Apr 15;129(5):2133-2144 [PMID: 30985291]
  2. Lab Invest. 2011 Apr;91(4):588-97 [PMID: 21242959]
  3. Blood. 2017 Mar 9;129(10):1357-1367 [PMID: 28073784]
  4. Curr Top Microbiol Immunol. 2014;377:127-57 [PMID: 24590675]
  5. J Thromb Thrombolysis. 2021 Feb;51(2):446-453 [PMID: 33151461]
  6. BMJ. 2020 May 22;369:m1966 [PMID: 32444366]
  7. J Exp Med. 2020 Sep 7;217(9): [PMID: 32678431]
  8. J Exp Med. 2020 Jun 1;217(6): [PMID: 32353870]
  9. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  10. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  11. Front Cell Infect Microbiol. 2017 May 29;7:217 [PMID: 28611952]
  12. N Engl J Med. 2021 Feb 25;384(8):693-704 [PMID: 32678530]
  13. J Infect Dis. 2021 Mar 29;223(6):933-944 [PMID: 33280009]
  14. Nat Commun. 2019 Jul 31;10(1):3422 [PMID: 31366921]
  15. Int J Hematol. 2015 Jul;102(1):129-33 [PMID: 25749661]
  16. Int J Antimicrob Agents. 2020 May;55(5):105954 [PMID: 32234467]
  17. Blood. 2020 Sep 3;136(10):1169-1179 [PMID: 32597954]
  18. Arthritis Rheumatol. 2020 Jul;72(7):1059-1063 [PMID: 32293098]
  19. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  20. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  21. Bioinformatics. 2010 Jun 15;26(12):1572-3 [PMID: 20427518]
  22. Stat Med. 2011 Nov 30;30(27):3181-91 [PMID: 21953204]
  23. J Exp Med. 2020 Dec 7;217(12): [PMID: 32926097]
  24. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  25. Lancet. 2020 May 2;395(10234):1407-1409 [PMID: 32278362]
  26. Clin Infect Dis. 2020 Jul 28;71(15):762-768 [PMID: 32161940]
  27. Trends Immunol. 2011 Aug;32(8):350-7 [PMID: 21782511]
  28. Trends Immunol. 2019 Jul;40(7):565-583 [PMID: 31160207]
  29. Sci Rep. 2019 Aug 29;9(1):12536 [PMID: 31467410]
  30. Am J Respir Cell Mol Biol. 2011 Mar;44(3):377-83 [PMID: 20463290]
  31. F1000Res. 2017 May 26;6:748 [PMID: 28663787]
  32. Blood. 2020 Jun 4;135(23):2033-2040 [PMID: 32339221]
  33. Am J Clin Pathol. 1997 May;107(5):582-91 [PMID: 9128272]
  34. Ann Intern Med. 2020 Aug 18;173(4):268-277 [PMID: 32374815]
  35. Sci Rep. 2019 Feb 27;9(1):2874 [PMID: 30814584]
  36. J Clin Invest. 2020 Nov 2;130(11):6151-6157 [PMID: 32759504]
  37. Science. 2020 Oct 23;370(6515): [PMID: 32972996]
  38. Clin Appl Thromb Hemost. 2020 Jan-Dec;26:1076029620938149 [PMID: 32677459]
  39. Thromb Res. 2020 Jul;191:9-14 [PMID: 32353746]
  40. Cytokine X. 2020 Jun;2(2):100029 [PMID: 32421092]
  41. Am J Pathol. 2002 Dec;161(6):2219-28 [PMID: 12466136]
  42. J Leukoc Biol. 2020 May;107(5):809-818 [PMID: 32170882]
  43. Cytometry A. 2015 Jul;87(7):636-45 [PMID: 25573116]
  44. Nat Med. 2001 Nov;7(11):1209-16 [PMID: 11689885]
  45. J Infect Dis. 2018 Jan 17;217(3):428-437 [PMID: 29325098]
  46. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  47. JAMA. 2020 Apr 28;323(16):1545-1546 [PMID: 32167538]
  48. Sci Immunol. 2020 Jul 15;5(49): [PMID: 32669287]
  49. Lancet Respir Med. 2020 Jun;8(6):e46-e47 [PMID: 32353251]
  50. Front Cell Infect Microbiol. 2019 Apr 16;9:108 [PMID: 31041196]
  51. J Am Coll Cardiol. 2021 Apr 20;77(15):1903-1921 [PMID: 33741176]
  52. Int Immunopharmacol. 2020 Jul;84:106504 [PMID: 32304994]
  53. Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2 [PMID: 32407669]
  54. J Am Coll Cardiol. 2020 Jun 16;75(23):2950-2973 [PMID: 32311448]
  55. Cardiovasc Res. 2003 Oct 15;60(1):26-39 [PMID: 14522404]
  56. J Autoimmun. 2020 Jul;111:102452 [PMID: 32291137]
  57. Transl Res. 2020 Jun;220:1-13 [PMID: 32299776]
  58. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  59. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  60. JCI Insight. 2020 Jun 4;5(11): [PMID: 32329756]
  61. JAMA. 2021 Apr 27;325(16):1620-1630 [PMID: 33734299]
  62. Gastroenterology. 2020 Jul;159(1):371-372 [PMID: 32247695]
  63. J Immunol. 2015 Feb 1;194(3):855-60 [PMID: 25596299]
  64. In Vivo. 2013 Nov-Dec;27(6):669-84 [PMID: 24292568]
  65. Am J Clin Pathol. 1997 Feb;107(2):187-96 [PMID: 9024067]
  66. Curr Med Res Opin. 2020 Nov;36(11):1747-1752 [PMID: 32986475]
  67. Semin Immunopathol. 2013 Jul;35(4):455-63 [PMID: 23553215]
  68. J Exp Med. 2020 Jun 1;217(6): [PMID: 32302401]
  69. Clin Immunol. 2020 May;214:108393 [PMID: 32222466]
  70. Innate Immun. 2018 May;24(4):210-220 [PMID: 29649915]
  71. Sci Rep. 2016 Aug 26;6:32188 [PMID: 27561337]
  72. JCI Insight. 2020 Jul 9;5(13): [PMID: 32501293]
  73. Blood. 2020 Jul 23;136(4):489-500 [PMID: 32492712]
  74. Aging (Albany NY). 2020 Jun 24;12(12):11245-11258 [PMID: 32633729]

Grants

  1. P20 GM113226/NIGMS NIH HHS
  2. P20 GM135004/NIGMS NIH HHS
  3. P30 GM106396/NIGMS NIH HHS
  4. P50 AA024337/NIAAA NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
Biomarkers
Blood Coagulation Disorders
COVID-19
Cytokines
Female
GPI-Linked Proteins
Hospitalization
Humans
Inflammation Mediators
Male
Middle Aged
Neutrophils
Pandemics
Phagocytosis
Platelet Activation
Receptors, IgG
Respiratory Distress Syndrome
SARS-CoV-2
Severity of Illness Index

Chemicals

Biomarkers
Cytokines
FCGR3B protein, human
GPI-Linked Proteins
Inflammation Mediators
Receptors, IgG