Single-cell analysis of cell identity in the Arabidopsis root apical meristem: insights and opportunities.

Rachel Shahan, Trevor M Nolan, Philip N Benfey
Author Information
  1. Rachel Shahan: Department of Biology, Duke University, Durham, NC 27708, USA. ORCID
  2. Trevor M Nolan: Department of Biology, Duke University, Durham, NC 27708, USA. ORCID
  3. Philip N Benfey: Department of Biology, Duke University, Durham, NC 27708, USA. ORCID

Abstract

A fundamental question in developmental biology is how the progeny of stem cells become differentiated tissues. The Arabidopsis root is a tractable model to address this question due to its simple organization and defined cell lineages. In particular, the zone of dividing cells at the root tip-the root apical meristem-presents an opportunity to map the gene regulatory networks underlying stem cell niche maintenance, tissue patterning, and cell identity acquisition. To identify molecular regulators of these processes, studies over the last 20 years employed global profiling of gene expression patterns. However, these technologies are prone to information loss due to averaging gene expression signatures over multiple cell types and/or developmental stages. Recently developed high-throughput methods to profile gene expression at single-cell resolution have been successfully applied to plants. Here, we review insights from the first published single-cell mRNA sequencing and chromatin accessibility datasets generated from Arabidopsis roots. These studies successfully reconstruct developmental trajectories, phenotype cell identity mutants at unprecedented resolution, and reveal cell type-specific responses to environmental stimuli. The experimental insight gained from Arabidopsis paves the way to profile roots from additional species.

Keywords

References

  1. Plant Cell. 2019 May;31(5):993-1011 [PMID: 30923229]
  2. Genome Biol. 2015 Jan 22;16:9 [PMID: 25608970]
  3. Science. 2020 Jan 24;367(6476):405-411 [PMID: 31974247]
  4. Plant Cell. 2021 Aug 13;33(7):2197-2220 [PMID: 33822225]
  5. Development. 2019 Jun 27;146(12): [PMID: 31249009]
  6. J Exp Bot. 2015 Sep;66(19):5651-62 [PMID: 26068468]
  7. Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18843-8 [PMID: 19843695]
  8. Development. 2019 Jun 27;146(12): [PMID: 31249002]
  9. Dev Cell. 2022 Feb 28;57(4):543-560.e9 [PMID: 35134336]
  10. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  11. Cell Rep. 2019 Jul 9;28(2):342-351.e4 [PMID: 31291572]
  12. Plant Cell. 2005 Jul;17(7):1908-25 [PMID: 15937229]
  13. Dev Cell. 2019 Mar 25;48(6):840-852.e5 [PMID: 30913408]
  14. Bioinformatics. 2009 Oct 1;25(19):2581-7 [PMID: 19608707]
  15. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  16. Cell. 2016 Jun 16;165(7):1721-1733 [PMID: 27212234]
  17. Science. 2018 Jun 1;360(6392): [PMID: 29700225]
  18. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  19. Annu Rev Cell Dev Biol. 2018 Oct 6;34:289-310 [PMID: 30134119]
  20. Trends Genet. 2017 Aug;33(8):529-539 [PMID: 28647055]
  21. Nat Biotechnol. 2021 Feb;39(2):149-153 [PMID: 33500565]
  22. Plant Cell. 2013 Jun;25(6):2132-54 [PMID: 23898029]
  23. Science. 2007 Nov 2;318(5851):801-6 [PMID: 17975066]
  24. Genome Biol. 2016 Apr 05;17:65 [PMID: 27048384]
  25. Science. 2022 Mar 4;375(6584):eabf4368 [PMID: 35239373]
  26. Mol Plant. 2019 May 6;12(5):648-660 [PMID: 31004836]
  27. Science. 2003 Dec 12;302(5652):1956-60 [PMID: 14671301]
  28. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  29. Science. 2008 May 16;320(5878):942-5 [PMID: 18436742]
  30. Science. 2020 Nov 13;370(6518): [PMID: 32943451]
  31. Curr Opin Plant Biol. 2015 Dec;28:9-15 [PMID: 26343015]
  32. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  33. Mol Plant. 2021 Mar 1;14(3):384-394 [PMID: 33352304]
  34. Development. 1993 Sep;119(1):71-84 [PMID: 8275865]
  35. Nature. 1997 Nov 20;390(6657):287-9 [PMID: 9384380]
  36. Dev Cell. 2016 Nov 21;39(4):508-522 [PMID: 27840108]
  37. Nat Struct Mol Biol. 2019 Nov;26(11):1063-1070 [PMID: 31695190]
  38. Trends Plant Sci. 2020 Feb;25(2):186-197 [PMID: 31780334]
  39. Cell Rep. 2019 May 14;27(7):2241-2247.e4 [PMID: 31091459]
  40. Mol Plant. 2021 Jan 4;14(1):115-126 [PMID: 33152518]
  41. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  42. Dev Cell. 2011 Oct 18;21(4):770-82 [PMID: 22014526]
  43. Plant Physiol. 2019 Apr;179(4):1444-1456 [PMID: 30718350]
  44. Nat Commun. 2021 Jun 7;12(1):3334 [PMID: 34099698]
  45. Nat Rev Genet. 2019 May;20(5):257-272 [PMID: 30696980]
  46. Mol Plant. 2021 Mar 1;14(3):372-383 [PMID: 33422696]
  47. Front Plant Sci. 2015 Jul 06;6:505 [PMID: 26217359]
  48. Science. 2018 Sep 28;361(6409):1380-1385 [PMID: 30166440]
  49. Plant J. 2021 Nov;108(3):859-869 [PMID: 34390289]
  50. Annu Rev Genet. 2018 Nov 23;52:203-221 [PMID: 30192636]
  51. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  52. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  53. New Phytol. 2015 Apr;206(2):493-6 [PMID: 25644233]
  54. Nat Commun. 2021 Apr 6;12(1):2053 [PMID: 33824350]
  55. Trends Plant Sci. 2019 Apr;24(4):303-310 [PMID: 30777643]
  56. Nat Biotechnol. 2019 Dec;37(12):1452-1457 [PMID: 31611697]
  57. Nat Commun. 2020 Nov 30;11(1):6077 [PMID: 33257685]
  58. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  59. Annu Rev Plant Biol. 2021 Jun 17;72:847-866 [PMID: 33730513]
  60. Cell. 2021 May 27;184(11):3041-3055.e21 [PMID: 33964211]

Grants

  1. F32 GM136030/NIGMS NIH HHS
  2. R35 GM131725/NIGMS NIH HHS

MeSH Term

Arabidopsis
Arabidopsis Proteins
Meristem
Plant Roots
Single-Cell Analysis

Chemicals

Arabidopsis Proteins