ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops.

Shaowei Wei, Ran Xia, Chengxuan Chen, Xiaoling Shang, Fengyong Ge, Huimin Wei, Huabang Chen, Yaorong Wu, Qi Xie
Author Information
  1. Shaowei Wei: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  2. Ran Xia: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  3. Chengxuan Chen: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  4. Xiaoling Shang: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  5. Fengyong Ge: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  6. Huimin Wei: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  7. Huabang Chen: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  8. Yaorong Wu: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
  9. Qi Xie: State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. ORCID

Abstract

Due to climate change, drought has become a severe abiotic stress that affects the global production of all crops. Elucidation of the complex physiological mechanisms underlying drought tolerance in crops will support the cultivation of new drought-tolerant crop varieties. Here, two drought-tolerant lines, RIL70 and RIL73, and two drought-sensitive lines, RIL44 and RIL93, from recombinant inbred lines (RIL) generated from maize drought-tolerant line PH4CV and drought-sensitive line F9721, were selected for a comparative RNA-seq study. Through transcriptome analyses, we found that gene expression differences existed between drought-tolerant and -sensitive lines, but also differences between the drought-tolerant lines, RIL70 and RIL73. ZmbHLH124 in RIL73, named as ZmbHLH124 which origins from PH4CV and encodes a bHLH type transcription factor, was specifically up-regulated during drought stress. In addition, we identified a substitution in ZmbHLH124 that produced an early stop codon in sensitive lines (ZmbHLH124 ). Overexpression of ZmbHLH124 , but not ZmbHLH124 , in maize and rice enhanced plant drought tolerance and up-regulated the expression of drought-responsive genes. Moreover, we found that ZmbHLH124 could directly bind the cis-acting elements in ZmDREB2A promoter to enhance its expression. Taken together, this work identified a valuable genetic locus and provided a new strategy for breeding drought-tolerant crops.

Keywords

References

  1. PLoS Genet. 2013 Jun;9(6):e1003577 [PMID: 23818868]
  2. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8528-E8536 [PMID: 28923951]
  3. Nat Commun. 2020 Oct 9;11(1):5089 [PMID: 33037196]
  4. Biotechnol Lett. 2011 Aug;33(8):1689-97 [PMID: 21528404]
  5. Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18822-7 [PMID: 17030801]
  6. J Biosci Bioeng. 2007 Jul;104(1):34-41 [PMID: 17697981]
  7. Front Plant Sci. 2017 May 19;8:721 [PMID: 28579992]
  8. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  9. PLoS One. 2014 May 08;9(5):e95445 [PMID: 24810581]
  10. Plant Mol Biol. 2015 Mar;87(4-5):413-28 [PMID: 25636202]
  11. Nat Rev Genet. 2008 Jun;9(6):444-57 [PMID: 18475268]
  12. Plant Physiol. 2013 Jan;161(1):346-61 [PMID: 23151346]
  13. Plant Cell. 2008 Jun;20(6):1693-707 [PMID: 18552202]
  14. Cell. 2016 Oct 6;167(2):313-324 [PMID: 27716505]
  15. Genome Res. 2009 Jun;19(6):1068-76 [PMID: 19420380]
  16. Plant Cell. 2013 May;25(5):1641-56 [PMID: 23673982]
  17. J Integr Plant Biol. 2019 Apr;61(4):478-491 [PMID: 30160823]
  18. Science. 2009 Nov 20;326(5956):1112-5 [PMID: 19965430]
  19. Plant Physiol. 2012 Oct;160(2):846-67 [PMID: 22837360]
  20. Nature. 2017 Jun 22;546(7659):524-527 [PMID: 28605751]
  21. Int J Mol Sci. 2018 Oct 31;19(11): [PMID: 30384475]
  22. Physiol Plant. 2014 Aug;151(4):459-67 [PMID: 24299295]
  23. Plant Physiol. 2016 Jan;170(1):586-99 [PMID: 26582726]
  24. J Integr Plant Biol. 2016 Jul;58(7):627-41 [PMID: 26507364]
  25. Front Plant Sci. 2015 Feb 11;6:57 [PMID: 25717333]
  26. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  27. Plant J. 2007 Apr;50(1):54-69 [PMID: 17346263]
  28. Plant Cell Physiol. 2011 Dec;52(12):2136-46 [PMID: 22025559]
  29. Curr Opin Biotechnol. 2012 Apr;23(2):243-50 [PMID: 22154468]
  30. Plant J. 2011 Apr;66(1):94-116 [PMID: 21443626]
  31. Front Plant Sci. 2016 Jul 26;7:1080 [PMID: 27507977]
  32. Plant Cell. 2012 Aug;24(8):3393-405 [PMID: 22942381]
  33. Curr Opin Plant Biol. 2007 Jun;10(3):296-302 [PMID: 17468040]
  34. PLoS One. 2013 Dec 20;8(12):e83011 [PMID: 24376625]
  35. F1000Res. 2016 Jun 30;5: [PMID: 27441087]
  36. Science. 2019 Aug 16;365(6454):658-664 [PMID: 31416957]
  37. Cell Mol Life Sci. 2015 Feb;72(4):673-89 [PMID: 25336153]
  38. Annu Rev Plant Biol. 2014;65:715-41 [PMID: 24313844]
  39. Plant J. 2015 Mar;81(6):871-83 [PMID: 25619813]
  40. PLoS One. 2015 Nov 24;10(11):e0143128 [PMID: 26599013]
  41. Plant J. 2020 May;102(4):747-760 [PMID: 31863495]
  42. Plant J. 2007 Jan;49(1):46-63 [PMID: 17233795]
  43. Nat Rev Genet. 2008 Mar;9(3):192-203 [PMID: 18250623]
  44. Plant Physiol. 2006 Aug;141(4):1167-84 [PMID: 16896230]
  45. Plant J. 2010 Mar;61(5):893-903 [PMID: 20015064]
  46. Plant Biotechnol J. 2021 Oct;19(10):2069-2081 [PMID: 34031958]
  47. Annu Rev Physiol. 2011;73:115-34 [PMID: 21034219]
  48. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  49. PLoS One. 2014 Jun 03;9(6):e98958 [PMID: 24892290]
  50. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  51. J Exp Bot. 2004 Nov;55(407):2365-84 [PMID: 15475377]
  52. PLoS One. 2013 Dec 23;8(12):e80457 [PMID: 24376497]
  53. Plant Physiol. 2008 Sep;148(1):6-24 [PMID: 18772351]
  54. Plant Cell. 2006 May;18(5):1292-309 [PMID: 16617101]
  55. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  56. Nat Commun. 2015 Sep 21;6:8326 [PMID: 26387805]
  57. J Exp Bot. 2021 Feb 24;72(4):1399-1410 [PMID: 33130877]
  58. Wiley Interdiscip Rev RNA. 2017 Jan;8(1): [PMID: 27198714]
  59. Plant Physiol. 2010 Jul;153(3):1398-412 [PMID: 20472752]
  60. Genetics. 2005 Feb;169(2):1133-46 [PMID: 15545647]
  61. Plant Biotechnol J. 2018 Jul;16(7):1375-1387 [PMID: 29327440]
  62. Genetics. 1993 Jun;134(2):585-96 [PMID: 8100788]
  63. J Exp Bot. 2019 Oct 15;70(19):5471-5486 [PMID: 31267122]
  64. Plant Cell. 2003 Aug;15(8):1749-70 [PMID: 12897250]
  65. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]
  66. PLoS Genet. 2013;9(7):e1003653 [PMID: 23935516]

MeSH Term

Droughts
Gene Expression Regulation, Plant
Plant Breeding
Stress, Physiological
Zea mays

Word Cloud

Similar Articles

Cited By