Regulatory KIR RA T cells accumulate with age and are highly activated during viral respiratory disease.

Daan K J Pieren, Noortje A M Smits, Jeroen Hoeboer, Vinitha Kandiah, Rimke J Postel, Rob Mariman, Josine van Beek, Debbie van Baarle, Jelle de Wit, Teun Guichelaar
Author Information
  1. Daan K J Pieren: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. ORCID
  2. Noortje A M Smits: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  3. Jeroen Hoeboer: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  4. Vinitha Kandiah: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  5. Rimke J Postel: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  6. Rob Mariman: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  7. Josine van Beek: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  8. Debbie van Baarle: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  9. Jelle de Wit: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
  10. Teun Guichelaar: Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands. ORCID

Abstract

Severe respiratory viral infectious diseases such as influenza and COVID-19 especially affect the older population. This is partly ascribed to diminished CD8 T-cell responses a result of aging. The phenotypical diversity of the CD8 T-cell population has made it difficult to identify the impact of aging on CD8 T-cell subsets associated with diminished CD8 T-cell responses. Here we identify a novel human CD8 T-cell subset characterized by expression of Killer-cell Immunoglobulin-like Receptors (KIR ) and CD45RA (RA ). These KIR RA T cells accumulated with age in the blood of healthy individuals (20-82 years of age, n = 50), expressed high levels of aging-related markers of T-cell regulation, and were functionally capable of suppressing proliferation of other CD8 T cells. Moreover, KIR RA T cells were a major T-cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR RA T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR RA T cells are a unique human T-cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.

Keywords

References

  1. Cell Rep. 2018 Jun 19;23(12):3512-3524 [PMID: 29924995]
  2. Nat Commun. 2016 Apr 21;7:11291 [PMID: 27097762]
  3. J Immunol. 2009 Jun 15;182(12):7518-26 [PMID: 19494275]
  4. Front Immunol. 2018 Nov 29;9:2788 [PMID: 30555473]
  5. J Immunol. 2012 Feb 15;188(4):1933-41 [PMID: 22246631]
  6. J Exp Med. 2004 Nov 1;200(9):1123-34 [PMID: 15520244]
  7. Nat Commun. 2020 Mar 9;11(1):1288 [PMID: 32152316]
  8. Nat Immunol. 2011 Jun;12(6):492-9 [PMID: 21739672]
  9. Sci Rep. 2017 Jan 13;7:40354 [PMID: 28084312]
  10. EMBO J. 2018 Jul 13;37(14): [PMID: 29752423]
  11. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  12. Clin Exp Immunol. 2005 Jun;140(3):540-6 [PMID: 15932517]
  13. JAMA. 2020 Feb 25;323(8):709-710 [PMID: 31999307]
  14. Eur Respir J. 2007 Dec;30(6):1158-66 [PMID: 17715167]
  15. Vaccine. 2005 Jul 8;23 Suppl 1:S1-9 [PMID: 15908058]
  16. J Immunol. 2010 Jul 15;185(2):803-7 [PMID: 20548035]
  17. Eur J Immunol. 2010 Apr;40(4):949-54 [PMID: 20201043]
  18. J Immunol. 2006 Dec 15;177(12):8348-55 [PMID: 17142731]
  19. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  20. J Infect Dis. 2017 Aug 15;216(4):415-424 [PMID: 28931240]
  21. Nature. 1999 Oct 14;401(6754):708-12 [PMID: 10537110]
  22. Ned Tijdschr Geneeskd. 2020 Jun 3;164: [PMID: 32749807]
  23. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  24. J Immunol. 2010 May 1;184(9):5151-9 [PMID: 20368274]
  25. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  26. J Immunol. 2015 Jul 1;195(1):145-55 [PMID: 25994968]
  27. J Exp Med. 2009 Feb 16;206(2):435-48 [PMID: 19188498]
  28. Trends Immunol. 2016 Dec;37(12):866-876 [PMID: 27720177]
  29. Immunity. 2014 Apr 17;40(4):569-81 [PMID: 24745333]
  30. J Leukoc Biol. 2008 Dec;84(6):1454-61 [PMID: 18780874]
  31. J Immunol Methods. 2018 Nov;462:1-8 [PMID: 30056034]
  32. Nat Rev Immunol. 2011 Apr;11(4):289-95 [PMID: 21436838]
  33. Nat Med. 2013 Oct;19(10):1305-12 [PMID: 24056771]
  34. Nat Commun. 2015 May 13;6:6833 [PMID: 25967273]
  35. Front Immunol. 2019 Jan 29;9:3103 [PMID: 30761157]
  36. Nature. 1987 Apr 30-May 6;326(6116):881-2 [PMID: 2437457]
  37. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2010-5 [PMID: 21233417]
  38. Front Immunol. 2016 Feb 25;7:41 [PMID: 26941738]
  39. Immunity. 2013 Nov 14;39(5):939-48 [PMID: 24238342]
  40. J Immunol. 2008 Aug 1;181(3):1835-48 [PMID: 18641321]
  41. Immunity. 2004 Oct;21(4):589-601 [PMID: 15485635]
  42. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  43. J Infect Dis. 2004 Jan 15;189(2):233-8 [PMID: 14722887]
  44. Science. 2015 Oct 16;350(6258):334-9 [PMID: 26472910]
  45. Eur J Immunol. 2015 Jul;45(7):1926-33 [PMID: 25903796]
  46. Aging Cell. 2018 Apr;17(2): [PMID: 29349889]
  47. J Immunol. 2005 Feb 15;174(4):1783-6 [PMID: 15699103]
  48. Nat Immunol. 2017 Mar;18(3):354-363 [PMID: 28114291]
  49. PLoS Pathog. 2016 Jan 07;12(1):e1005349 [PMID: 26741490]
  50. J Immunol. 2013 Apr 1;190(7):3438-46 [PMID: 23467933]
  51. J Biol Chem. 2010 Apr 16;285(16):11827-35 [PMID: 20178987]
  52. Lancet. 2011 Apr 9;377(9773):1264-75 [PMID: 21435708]
  53. Cancer Cell. 2014 Dec 8;26(6):923-937 [PMID: 25465800]
  54. J Immunol. 2010 Apr 1;184(7):3433-41 [PMID: 20181882]
  55. Aging Cell. 2016 Feb;15(1):14-21 [PMID: 26472076]
  56. PLoS Pathog. 2010 Jun 10;6(6):e1000947 [PMID: 20548953]
  57. J Clin Invest. 1991 Sep;88(3):1026-33 [PMID: 1909350]
  58. J Immunol. 2013 Mar 1;190(5):1936-47 [PMID: 23355737]
  59. Cytometry A. 2014 Jan;85(1):25-35 [PMID: 24124072]
  60. PLoS One. 2019 Sep 3;14(9):e0220908 [PMID: 31479459]
  61. J Immunol. 2013 Dec 15;191(12):5793-6 [PMID: 24227783]
  62. JAMA. 2003 Jan 8;289(2):179-86 [PMID: 12517228]
  63. J Exp Med. 1997 Nov 3;186(9):1407-18 [PMID: 9348298]

MeSH Term

Aged
Aged, 80 and over
Aging
CD8-Positive T-Lymphocytes
COVID-19
Female
Gene Expression Regulation
Humans
Influenza, Human
Male
Middle Aged
Receptors, KIR
SARS-CoV-2
T-Lymphocyte Subsets

Chemicals

Receptors, KIR