Chromatin state dynamics confers specific therapeutic strategies in enhancer subtypes of colorectal cancer.

Elias Orouji, Ayush T Raman, Anand K Singh, Alexey Sorokin, Emre Arslan, Archit K Ghosh, Jonathan Schulz, Christopher Terranova, Shan Jiang, Ming Tang, Mayinuer Maitituoheti, Scot C Callahan, Praveen Barrodia, Katarzyna Tomczak, Yingda Jiang, Zhiqin Jiang, Jennifer S Davis, Sukhen Ghosh, Hey Min Lee, Laura Reyes-Uribe, Kyle Chang, Yusha Liu, Huiqin Chen, Ali Azhdarinia, Jeffrey Morris, Eduardo Vilar, Kendra S Carmon, Scott E Kopetz, Kunal Rai
Author Information
  1. Elias Orouji: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ORCID
  2. Ayush T Raman: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ORCID
  3. Anand K Singh: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  4. Alexey Sorokin: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  5. Emre Arslan: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ORCID
  6. Archit K Ghosh: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  7. Jonathan Schulz: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  8. Christopher Terranova: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  9. Shan Jiang: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  10. Ming Tang: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  11. Mayinuer Maitituoheti: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  12. Scot C Callahan: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  13. Praveen Barrodia: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  14. Katarzyna Tomczak: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  15. Yingda Jiang: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  16. Zhiqin Jiang: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  17. Jennifer S Davis: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  18. Sukhen Ghosh: Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA.
  19. Hey Min Lee: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  20. Laura Reyes-Uribe: Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  21. Kyle Chang: Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  22. Yusha Liu: University of Chicago Medical Center, Chicago, Illinois, USA.
  23. Huiqin Chen: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  24. Ali Azhdarinia: Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA.
  25. Jeffrey Morris: University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
  26. Eduardo Vilar: MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ORCID
  27. Kendra S Carmon: MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  28. Scott E Kopetz: Department of GI Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  29. Kunal Rai: Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA krai@mdanderson.org. ORCID

Abstract

OBJECTIVE: Enhancer aberrations are beginning to emerge as a key epigenetic feature of colorectal cancers (CRC), however, a comprehensive knowledge of chromatin state patterns in tumour progression, heterogeneity of these patterns and imparted therapeutic opportunities remain poorly described.
DESIGN: We performed comprehensive epigenomic characterisation by mapping 222 chromatin profiles from 69 samples (33 colorectal adenocarcinomas, 4 adenomas, 21 matched normal tissues and 11 colon cancer cell lines) for six histone modification marks: H3K4me3 for Pol II-bound and CpG-rich promoters, H3K4me1 for poised enhancers, H3K27ac for enhancers and transcriptionally active promoters, H3K79me2 for transcribed regions, H3K27me3 for polycomb repressed regions and H3K9me3 for heterochromatin.
RESULTS: We demonstrate that H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumour-specific enhancers for crucial oncogenes, such as and was required for excessive proliferation. Consistently, combination of MEK plus bromodomain inhibition was found to have synergistic effects in CRC patient-derived xenograft models. Probing intertumour heterogeneity, we identified four distinct enhancer subtypes (EPIgenome-based Classification, EpiC), three of which correlate well with previously defined transcriptomic subtypes (consensus molecular subtypes, CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, TGFβi, mTORi and SRCi) for EpiC groups.
CONCLUSION: Our data suggest that the dynamics of active enhancer underlies CRC progression and the patient-specific enhancer patterns can be leveraged for precision combination therapy.

Keywords

References

  1. Nat Commun. 2015 Aug 18;6:7973 [PMID: 26282110]
  2. Oncotarget. 2016 Dec 13;7(50):82228-82243 [PMID: 27429045]
  3. Oncology. 1996 Nov-Dec;53(6):448-54 [PMID: 8960139]
  4. Sci Rep. 2017 Sep 7;7(1):10909 [PMID: 28883623]
  5. Nat Commun. 2016 Jun 29;7:11996 [PMID: 27353863]
  6. Clin Cancer Res. 1996 Jun;2(6):1049-53 [PMID: 9816266]
  7. BMC Cancer. 2016 Sep 13;16(1):730 [PMID: 27619912]
  8. Am J Clin Pathol. 2008 Dec;130(6):897-904 [PMID: 19019766]
  9. Cell Stem Cell. 2015 Feb 5;16(2):158-70 [PMID: 25620640]
  10. Cell Death Dis. 2019 Mar 4;10(3):217 [PMID: 30833544]
  11. Mol Carcinog. 2013 Feb;52(2):155-66 [PMID: 22121102]
  12. Mol Cancer. 2017 Jul 6;16(1):116 [PMID: 28683746]
  13. Cancer Cell. 2018 Jan 8;33(1):125-136.e3 [PMID: 29316426]
  14. Cancer Treat Rev. 2021 Jan;92:102137 [PMID: 33340965]
  15. Cell Death Differ. 2018 Mar;25(3):616-633 [PMID: 29305587]
  16. Nat Biotechnol. 2017 Mar;35(3):238-248 [PMID: 28244990]
  17. Nat Med. 2015 Nov;21(11):1350-6 [PMID: 26457759]
  18. Nat Genet. 2017 Oct;49(10):1428-1436 [PMID: 28869592]
  19. Int J Mol Med. 2002 Feb;9(2):107-12 [PMID: 11786918]
  20. Sci Rep. 2017 Nov 30;7(1):16618 [PMID: 29192179]
  21. Cell. 2020 Sep 17;182(6):1474-1489.e23 [PMID: 32841603]
  22. Expert Opin Investig Drugs. 2020 Jan;29(1):33-47 [PMID: 31869253]
  23. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  24. PLoS One. 2012;7(2):e32170 [PMID: 22384170]
  25. J Mol Histol. 2008 Jun;39(3):283-94 [PMID: 18327651]
  26. N Engl J Med. 2016 Mar 17;374(11):1065-75 [PMID: 26981936]
  27. Cell. 1990 Jun 1;61(5):759-67 [PMID: 2188735]
  28. Nature. 2020 Jul;583(7818):699-710 [PMID: 32728249]
  29. Cell. 2013 Apr 11;153(2):320-34 [PMID: 23582323]
  30. Cancer Cell. 2019 Feb 11;35(2):315-328.e6 [PMID: 30753828]
  31. Life Sci Alliance. 2019 Dec 2;2(6): [PMID: 31792061]
  32. Elife. 2019 Feb 13;8: [PMID: 30759065]
  33. Cell. 2010 Sep 17;142(6):930-42 [PMID: 20850014]
  34. Mol Cell Biol. 1985 Aug;5(8):1969-76 [PMID: 3837853]
  35. J Biol Regul Homeost Agents. 2015 Jan-Mar;29(1):85-92 [PMID: 25864744]
  36. Cell. 2013 Apr 11;153(2):307-19 [PMID: 23582322]
  37. Nature. 2020 Feb;578(7795):449-454 [PMID: 32051587]
  38. Nat Commun. 2017 Feb 07;8:14400 [PMID: 28169291]
  39. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  40. Nat Methods. 2012 Feb 28;9(3):215-6 [PMID: 22373907]
  41. Science. 2018 Oct 26;362(6413): [PMID: 30361341]
  42. Genes Dev. 2019 Mar 1;33(5-6):310-332 [PMID: 30804224]
  43. Nat Biotechnol. 2010 May;28(5):495-501 [PMID: 20436461]
  44. Neoplasia. 2010 Nov;12(11):856-65 [PMID: 21076612]
  45. Nature. 2012 Jul 18;487(7407):330-7 [PMID: 22810696]
  46. Nat Commun. 2014 Nov 14;5:5457 [PMID: 25394515]
  47. Gut. 2017 Sep;66(9):1665-1676 [PMID: 27325420]
  48. Clin Cancer Res. 2018 Feb 15;24(4):794-806 [PMID: 29242316]
  49. Science. 2012 May 11;336(6082):736-9 [PMID: 22499810]
  50. Nat Cell Biol. 2014 Jul;16(7):695-707 [PMID: 24952462]
  51. Eur J Cancer. 2017 Nov;86:150-157 [PMID: 28988015]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. R01 CA178744/NCI NIH HHS
  3. R01 CA244845/NCI NIH HHS
  4. S10 RR029552/NCRR NIH HHS

MeSH Term

Basic Helix-Loop-Helix Transcription Factors
Chromatin
Colorectal Neoplasms
Enhancer Elements, Genetic
Humans
Nuclear Proteins
Transcription Factors

Chemicals

ASCL2 protein, human
Basic Helix-Loop-Helix Transcription Factors
Chromatin
Nuclear Proteins
Transcription Factors