SARS-CoV-2 infection induces beta cell transdifferentiation.

Xuming Tang, Skyler Uhl, Tuo Zhang, Dongxiang Xue, Bo Li, J Jeya Vandana, Joshua A Acklin, Lori L Bonnycastle, Narisu Narisu, Michael R Erdos, Yaron Bram, Vasuretha Chandar, Angie Chi Nok Chong, Lauretta A Lacko, Zaw Min, Jean K Lim, Alain C Borczuk, Jenny Xiang, Ali Naji, Francis S Collins, Todd Evans, Chengyang Liu, Benjamin R tenOever, Robert E Schwartz, Shuibing Chen
Author Information
  1. Xuming Tang: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  2. Skyler Uhl: Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
  3. Tuo Zhang: Genomics Resources Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  4. Dongxiang Xue: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  5. Bo Li: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  6. J Jeya Vandana: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, the Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
  7. Joshua A Acklin: Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
  8. Lori L Bonnycastle: The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
  9. Narisu Narisu: The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
  10. Michael R Erdos: The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
  11. Yaron Bram: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  12. Vasuretha Chandar: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  13. Angie Chi Nok Chong: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  14. Lauretta A Lacko: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  15. Zaw Min: Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
  16. Jean K Lim: Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
  17. Alain C Borczuk: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  18. Jenny Xiang: Genomics Resources Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  19. Ali Naji: Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
  20. Francis S Collins: The Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
  21. Todd Evans: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
  22. Chengyang Liu: Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. Electronic address: chliu@pennmedicine.upenn.edu.
  23. Benjamin R tenOever: Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA. Electronic address: benjamin.tenoever@mssm.edu.
  24. Robert E Schwartz: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA. Electronic address: rec2025@med.cornell.edu.
  25. Shuibing Chen: Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA. Electronic address: shc2034@med.cornell.edu.

Abstract

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.

Keywords

References

  1. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  2. Cell Metab. 2020 Dec 1;32(6):1028-1040.e4 [PMID: 33207245]
  3. Diabetes Res Clin Pract. 2020 Jun;164:108166 [PMID: 32339533]
  4. Cell. 2012 Sep 14;150(6):1223-34 [PMID: 22980982]
  5. Cell Syst. 2016 Oct 26;3(4):385-394.e3 [PMID: 27693023]
  6. Lancet. 2020 Jun 6;395(10239):1763-1770 [PMID: 32442528]
  7. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  8. J Clin Endocrinol Metab. 2016 Mar;101(3):1044-54 [PMID: 26713822]
  9. Nat Metab. 2020 Oct;2(10):1021-1024 [PMID: 32879473]
  10. Nat Biotechnol. 2006 Nov;24(11):1392-401 [PMID: 17053790]
  11. Diabetologia. 2020 Oct;63(10):2102-2111 [PMID: 32647915]
  12. Cell Metab. 2020 Dec 1;32(6):1041-1051.e6 [PMID: 33207244]
  13. Cell Metab. 2014 May 6;19(5):872-82 [PMID: 24746806]
  14. JCI Insight. 2018 Feb 8;3(3): [PMID: 29415896]
  15. Cell. 2021 Jan 7;184(1):106-119.e14 [PMID: 33333024]
  16. Diabetes. 2013 May;62(5):1557-68 [PMID: 23274897]
  17. Science. 2020 Nov 13;370(6518):861-865 [PMID: 33082294]
  18. Cell Metab. 2020 Jun 2;31(6):1068-1077.e3 [PMID: 32369736]
  19. Cell Syst. 2016 Oct 26;3(4):346-360.e4 [PMID: 27667365]
  20. Cell Metab. 2016 Oct 11;24(4):608-615 [PMID: 27667665]
  21. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  22. Clin Gastroenterol Hepatol. 2020 Aug;18(9):2128-2130.e2 [PMID: 32334082]
  23. Diabetes Care. 2020 Nov;43(11):e170-e171 [PMID: 32816997]
  24. EBioMedicine. 2020 Oct;60:102976 [PMID: 32971472]
  25. Elife. 2016 Sep 07;5: [PMID: 27602576]
  26. Int J Environ Res Public Health. 2021 Jan 02;18(1): [PMID: 33401657]
  27. Diabetes. 2015 Aug;64(8):2928-38 [PMID: 25918235]
  28. Diabetes Obes Metab. 2020 Oct;22(10):1897-1906 [PMID: 32469464]
  29. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  30. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  31. Science. 2015 May 29;348(6238):1027-30 [PMID: 25858979]
  32. Diabetes. 2016 Oct;65(10):3028-38 [PMID: 27364731]
  33. Cell Metab. 2017 May 2;25(5):1160-1175.e11 [PMID: 28467932]
  34. Cell Metab. 2014 Oct 7;20(4):593-602 [PMID: 25264246]
  35. Nat Commun. 2014 Aug 22;5:4639 [PMID: 25145789]
  36. Cell. 2021 Jan 7;184(1):76-91.e13 [PMID: 33147444]
  37. Cell. 2021 Jan 7;184(1):120-132.e14 [PMID: 33382968]
  38. Mol Cell Biol. 1995 Aug;15(8):4497-506 [PMID: 7623840]
  39. Nat Commun. 2018 Jul 11;9(1):2681 [PMID: 29992946]
  40. J Biol Chem. 1991 Jul 5;266(19):12695-702 [PMID: 1676400]
  41. Immunity. 2021 Mar 9;54(3):557-570.e5 [PMID: 33577760]
  42. Cell Metab. 2020 May 5;31(5):1017-1031.e4 [PMID: 32302527]
  43. Acta Biomed. 2020 Jul 13;91(3):ahead of print [PMID: 32921748]
  44. Cell. 2021 Jan 7;184(1):92-105.e16 [PMID: 33147445]
  45. Hormones (Athens). 2021 Jun;20(2):409-414 [PMID: 33236191]
  46. PLoS One. 2017 Jun 15;12(6):e0179398 [PMID: 28617859]
  47. Diabetes. 2018 Sep;67(9):1783-1794 [PMID: 29950394]
  48. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  49. RNA. 2003 Jul;9(7):858-70 [PMID: 12810919]
  50. EMBO Rep. 2016 Feb;17(2):178-87 [PMID: 26691212]
  51. Cell Metab. 2020 Apr 7;31(4):822-836.e5 [PMID: 32220307]
  52. Am J Emerg Med. 2020 Nov;38(11):2491.e3-2491.e4 [PMID: 32536476]
  53. Science. 2018 Mar 30;359(6383):1533-1536 [PMID: 29599245]
  54. Diabetes. 2016 Nov;65(11):3418-3428 [PMID: 27465220]
  55. Nat Commun. 2019 May 13;10(1):2136 [PMID: 31086188]
  56. Nat Commun. 2020 Nov 17;11(1):5838 [PMID: 33203860]
  57. Diabetes Res Clin Pract. 2020 Oct;168:108374 [PMID: 32805345]
  58. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  59. Mol Biol Cell. 2011 Nov;22(22):4390-405 [PMID: 21917591]
  60. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  61. Elife. 2015 Feb 26;4: [PMID: 25719440]
  62. Front Cell Dev Biol. 2020 Aug 19;8:783 [PMID: 32974340]
  63. Nature. 2021 Jan;589(7841):270-275 [PMID: 33116299]
  64. Front Med. 2020 Apr;14(2):185-192 [PMID: 32170560]
  65. Cell. 2017 Oct 5;171(2):321-330.e14 [PMID: 28965763]
  66. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  67. Cell Metab. 2017 May 2;25(5):1194-1205.e4 [PMID: 28467935]
  68. Cell Metab. 2016 Oct 11;24(4):593-607 [PMID: 27667667]
  69. Nat Metab. 2021 Feb;3(2):149-165 [PMID: 33536639]
  70. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]

Grants

  1. DP3 DK111907/NIDDK NIH HHS
  2. ZIA HG000024/Intramural NIH HHS
  3. R01 DK119667/NIDDK NIH HHS
  4. R01 CA234614/NCI NIH HHS
  5. R01 DK124463/NIDDK NIH HHS
  6. R03 DK117252/NIDDK NIH HHS
  7. R01 DK116075/NIDDK NIH HHS
  8. UC4 DK112217/NIDDK NIH HHS
  9. R01 AI107301/NIAID NIH HHS
  10. F32 HD096810/NICHD NIH HHS
  11. U01 DK127777/NIDDK NIH HHS
  12. P30 DK020541/NIDDK NIH HHS
  13. R01 DK121072/NIDDK NIH HHS
  14. P60 DK020541/NIDDK NIH HHS

MeSH Term

Acetamides
Adolescent
Adult
Aged
Aged, 80 and over
Animals
COVID-19
Cell Transdifferentiation
Chlorocebus aethiops
Cyclohexylamines
Cytokines
Eukaryotic Initiation Factor-2
Female
Glucagon
Host-Pathogen Interactions
Humans
Insulin
Insulin-Secreting Cells
Male
Middle Aged
Phenotype
SARS-CoV-2
Signal Transduction
Tissue Culture Techniques
Trypsin
Vero Cells
Young Adult

Chemicals

2-(4-chlorophenoxy)-N-(4-(2-(4-chlorophenoxy)acetamido)cyclohexyl)acetamide
Acetamides
Cyclohexylamines
Cytokines
Eukaryotic Initiation Factor-2
Insulin
Glucagon
PRSS1 protein, human
Trypsin