Do, J–L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).
[PMID:
28149948]
Frišcic, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).
[DOI:
10.1002/anie.201906755]
Wiggins, K. M., Brantely, J. N. & Bielawski, C. W. Methods for activating and characterizing mechanically responsive polymers. Chem. Soc. Rev. 42, 7130–7147 (2013).
[PMID:
23389104]
Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).
[PMID:
16092823]
Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).
[PMID:
23344926]
Do, J–L. & Friščić, T. Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett 28, 2066–2092 (2017).
[DOI:
10.1055/s-0036-1590854]
Andersen, J. & Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green. Chem. 20, 1435–1443 (2018).
[DOI:
10.1039/C7GC03797J]
Wang, G. –W. Mechanochemical organic synthesis. Chem. Soc. Rev. 42, 7668–7700 (2013).
[PMID:
23660585]
Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719–7738 (2013).
[PMID:
23864028]
Šepelák, V., Düvel, A., Wilkening, M., Becker, K.-D. & Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 42, 7507–7520 (2013).
[PMID:
23364473]
Beillard, A., Bantreil, X., Mètro, T.-X., Martinez, J. & Lamaty, F. Alternative technologies that facilitate access to discrete metal complexes. Chem. Rev. 119, 7529–7609 (2019).
[PMID:
31059243]
Rightmire, N. R. & Hanusa, T. P. Advances in organometallic synthesis with mechanochemical methods. Dalton Trans. 45, 2352–2362 (2016).
[PMID:
26763151]
Friščić, T. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem. Soc. Rev. 41, 3493–3510 (2012).
[PMID:
22371100]
Hasa, D., Schneider Rauber, G., Voinovich, D. & Jones, W. Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew. Chem. Int. Ed. 54, 7371–7375 (2015).
[DOI:
10.1002/anie.201501638]
Stolar, T. & Užarević, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal-organic frameworks. CrystEngComm 22, 4511–4525 (2020).
[DOI:
10.1039/D0CE00091D]
Porcheddu, A., Colacino, E., De Luca, L. & Delogu, F. Metal-mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal. 10, 8344–8394 (2020).
[DOI:
10.1021/acscatal.0c00142]
Hernández, J. G., Ardila-Fierro, K. J., Crawford, D., James, S. L. & Bolm, C. Mechanoenzymatic peptide and amide bond formation. Green. Chem. 19, 2620–2625 (2017).
[DOI:
10.1039/C7GC00615B]
Tan, D., Loots, L. & Friščić, T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem. Comunn 52, 7760–7781 (2016).
[DOI:
10.1039/C6CC02015A]
Colacino, E., Porcheddu, A., Charnay, C. & Delogu, F. From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React. Chem. Eng. 4, 1179–1188 (2019).
[DOI:
10.1039/C9RE00069K]
Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).
[PMID:
20023854]
Gomolón-Bel, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 41, 12–17 (2019).
[DOI:
10.1515/ci-2019-0203]
Baláž, P. et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 42, 7571–7637 (2013).
[PMID:
23558752]
Mulas, G., Loiselle, S., Schiffini, L. & Cocco, G. The mechanochemical self-propagating reaction between hexachlorobenzene and calcium hydride. J. Solid State Chem. 129, 263–270 (1997).
[DOI:
10.1006/jssc.1996.7238]
Doppiu, S., Schultz, L. & Gutfleisch, O. In situ pressure and temperature monitoring during the conversion of Mg into MgH by high-pressure reactive ball milling. J. Alloy. Compd. 427, 204–208 (2007).
[DOI:
10.1016/j.jallcom.2006.02.045]
Troschke, E., Grätz, S., Lübken, T. & Borchardt, L. Mechanochemical Friedel–Crafts alkylation – a sustainable pathway towards porous organic. Polym. Angew. Chem. Int. Ed. 56, 6859–6863 (2017).
[DOI:
10.1002/anie.201702303]
Friščić, T., Childs, S. L., Rizvi, S. A. A. & Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 11, 418–426 (2009).
[DOI:
10.1039/B815174A]
Bowmaker, G. A. Solvent-assisted mechanochemistry. Chem. Commun. 49, 334–348 (2013).
[DOI:
10.1039/C2CC35694E]
Friščić, T. et al. Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew. Chem. Int. Ed. 49, 712–715 (2010).
[DOI:
10.1002/anie.200906583]
Hasa, D., Carlino, E. & Jones, W. Polymer-assisted grinding, a versatile method for polymorph control of cocrystallization. Crys. Growth Des. 16, 1772–1779 (2016).
[DOI:
10.1021/acs.cgd.6b00084]
Mukherjee, A., Rogers, R. D. & Myerson, A. S. Cocrystal formation by ionic liquid-assisted grinding: case study with cocrystals of caffeine. CrystEngComm 20, 3817–3821 (2018).
[DOI:
10.1039/C8CE00859K]
Mørup, S., Jiang, J. Z., Bødker, F. & Horsewell, A. Crystal growth and the steady-state grain size during high-energy ball-milling. Europhys. Lett. 56, 441–446 (2001).
[DOI:
10.1209/epl/i2001-00538-7]
Delogu, F. & Takacs, L. Information on the mechanism of mechanochemical reaction from detailed studies of the reaction kinetics. J. Mater. Sci. 53, 13331–13342 (2018).
[DOI:
10.1007/s10853-018-2090-1]
Ma, X., Yuan, W., Bell, S. E. J. & James, S. L. Better understanding of mechanochemical reactions: Raman monitoring reveals surprisingly simple pseudo-fluid model for a ball milling reaction. Chem. Commun. 50, 1585–1587 (2014).
[DOI:
10.1039/c3cc47898j]
Tröbs, L. & Emmerling, F. Mechanochemical synthesis and characterisation of cocrystals and metal organic compounds. Faraday Discuss. 170, 109–119 (2014).
[PMID:
25408947]
Rehder, S. et al. Investigation of the formation process of two piracetam cocrystals during grinding. Pharmaceutics 3, 706–722 (2011).
[PMID:
24309304]
Hutchings, B. P., Crawford, D. E., Gao, L., Hu, P. & James, S. L. Feedback kinetics in mechanochemistry: the importance of cohesive states. Angew. Chem. Int. Ed. 56, 15252–15256 (2017).
[DOI:
10.1002/anie.201706723]
Belenguer, A. M., Lampronti, G. I., Cruz-Cabeza, A. J., Hunter, C. A. & Sanders, J. K. M. Solvation and surface effects on polymorph stabilities at the nanoscale. Chem. Sci. 7, 6617–6627 (2016).
[PMID:
28567252]
Belenguer, A. M., Lampronti, G. I., Wales, D. J. & Sanders, J. K. M. Direct observation of intermediates in a thermodynamically controlled solid-state dynamic covalent reaction. J. Am. Chem. Soc. 136, 16156–16166 (2014).
[PMID:
25314624]
Štrukil, V. et al. Towards an environmentally-friendly laboratory: dimensionality and reactivity in the mechanosynthesis of metal–organic compounds. Chem. Commun. 46, 9191–9193 (2010).
[DOI:
10.1039/c0cc03822a]
Cliffe, M. J., Mottillo, C., Stein, R. S., Bucar, D.-K. & Frišcic, T. Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials. Chem. Sci. 3, 2495–2500 (2012).
[DOI:
10.1039/C2SC20344H]
Hammerer, F. et al. Solvent-free enzyme activity: quick, high-yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew. Chem. Int. Ed. 57, 2621–2624 (2018).
[DOI:
10.1002/anie.201711643]
Belenguer, A. M., Michalchuk, A. A. L., Lampronti, G. I. & Sanders, J. K. M. Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions. Beilstein J. Org. Chem. 15, 1226–1235 (2019).
[PMID:
31293670]
Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6, 6662 (2015).
[PMID:
25798542]
Krusenbaum, A., Grätz, S., Bimmermann, S., Hutscha, S. & Borchardt, L. The mechanochemical Scholl reaction as a versatile synthesis tool for the solvent-free generation of microporous polymers. RSC Adv. 10, 25509–25516 (2020).
[DOI:
10.1039/D0RA05279E]
Brekalo, I. et al. Manometric real-time studies of the mechanochemical synthesis of zeolitic imidazolate frameworks. Chem. Sci. 11, 2141–2147 (2020).
[PMID:
34123303]
Grätz, S. et al. The mechanochemical Scholl reaction—a solvent-free and versatile graphitization tool. Chem. Commun. 54, 5307–5310 (2018).
[DOI:
10.1039/C8CC01993B]
Friščić, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013).
[PMID:
23247180]
Halasz, I. et al. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction. Nat. Protoc. 8, 1718–1729 (2013).
[PMID:
23949378]
Halasz, I. et al. Quantitative in situ and real-time monitoring of mechanochemical reactions. Faraday Discuss. 170, 203–221 (2014).
[PMID:
25408067]
Gracin, D., Štrukil, V., Frišcic, T., Halasz, I. & Užarevic, K. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew. Chem. Int. Ed. 53, 6193–6197 (2014).
[DOI:
10.1002/anie.201402334]
Juribašić, M., Užarević, K., Gracin, D. & Ćurić, M. Mechanochemical C–H bond activation: rapid and regioselective double cyclopalladation monitored by in situ Raman spectroscopy. Chem. Commun. 50, 10287–10290 (2014).
[DOI:
10.1039/C4CC04423A]
Simon, L. L. et al. Assessment of recent process analytical technology (PAT) trends: a multiauthor review. Org. Process Res. Dev. 19, 3–62 (2015).
[DOI:
10.1021/op500261y]
Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B. & Lewis, I. R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 409, 637–649 (2017).
[PMID:
27491299]
Pataki, H. et al. Implementation of Raman signal feedback to perform controlled crystallization of carvedilol. Org. Process Res. Dev. 17, 493–499 (2012).
[DOI:
10.1021/op300062t]
Csontos, I. et al. Feedback control of oximation reaction by inline Raman spectroscopy. Org. Process Res. Dev. 19, 189–195 (2015).
[DOI:
10.1021/op500015d]
De Beer, T. et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 417, 32–47 (2011).
[PMID:
21167266]
Pelletier, M. J. Quantitative analysis using Raman spectrometry. Appl. Spectrosc. 57, 20A–42A (2003).
[PMID:
14610929]
Lisac, K. et al. Halogen-bonded cocrystallization with phosphorus, arsenic and antimony acceptors. Nat. Commun. 10, 61 (2019).
[PMID:
30610194]
Batzdorf, L., Fischer, F., Wilke, M., Wenzel, K.-J. & Emmerling, F. Direct in situ investigation of milling reactions using combined x-ray diffraction and Raman spectroscopy. Angew. Chem. Int. Ed. 54, 1799–1802 (2015).
[DOI:
10.1002/anie.201409834]
Lukin, S. et al. Tandem in situ monitoring for quantitative assessment of mechanochemical reactions involving structurally unknown phases. Chem. Eur. J. 23, 13941–13949 (2017).
[PMID:
28639258]
Lukin, S. et al. Isotope labeling reveals fast atomic and molecular exchange in mechanochemical milling reactions. J. Am. Chem. Soc. 141, 1212–1216 (2019).
[PMID:
30608669]
Lukin, S. et al. Mechanochemical metathesis between AgNO and NaX (X = Cl, Br, I) and AgXNO double-salt formation. Inorg. Chem. 59, 12200–12208 (2020).
[PMID:
32806016]
Kulla, H. et al. Warming up for mechanosynthesis—temperature development in ball mills during synthesis. Chem. Commun. 53, 1664–1667 (2017).
[DOI:
10.1039/C6CC08950J]
Ali, S. J., Maierhofer, N. Z. & Christiane, E. F. Ettringite via mechanochemistry: a green and rapid approach for industrial application. ACS Omega 4, 7734–7737 (2019).
[PMID:
31459862]
Fischer, F., Wenzel, K.-J., Rademann, K. & Emmerling, F. Quantitative determination of activation energies in mechanochemical reactions. Phys. Chem. Chem. Phys. 18, 23320–23325 (2016).
[PMID:
27498986]
Kulla, H. et al. In situ investigations of mechanochemical one‐pot syntheses. Angew. Chem. Int. Ed. 57, 5930–5933 (2018).
[DOI:
10.1002/anie.201800147]
Sović, I. et al. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ raman spectroscopy. ACS Omega 5, 28663–28672 (2020).
[PMID:
33195919]
De Oliveira, P. F. M. et al. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chem. Commun. 56, 10329–10332 (2020).
[DOI:
10.1039/D0CC03862H]
Schiffmann, J. G., Emmerling, F., Martins, I. C. B. & Van Wüllen, L. In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR. Solid State Nucl. Magn. Reson. 109, 101687 (2020).
[PMID:
32905877]
Kulla, H. et al. Tuning the apparent stability of polymorphic cocrystals through mechanochemistry. Cryst. Growth Des. 19, 7271–7279 (2019).
[DOI:
10.1021/acs.cgd.9b01158]
Surov, A. O. et al. Solid forms of ciprofloxacin salicylate: polymorphism, formation pathways, and thermodynamic stability. Cryst. Growth Des. 19, 2979–2990 (2019).
[DOI:
10.1021/acs.cgd.9b00185]
Lukin, S. et al. Experimental and theoretical study of selectivity in mechanochemical cocrystallization of nicotinamide with anthranilic and salicylic acid. Cryst. Growth Des. 18, 1539–1547 (2018).
[DOI:
10.1021/acs.cgd.7b01512]
Kulla, H., Michalchuk, A. A. L. & Emmerling, F. Manipulating the dynamics of mechanochemical ternary cocrystal formation. Chem. Commun. 55, 9793–9796 (2019).
[DOI:
10.1039/C9CC03034D]
Fischer, F., Lubjuhn, D., Greiser, S., Rademann, K. & Emmerling, F. Supply and demand in the ball mill: competitive cocrystal reactions. Cryst. Growth Des. 16, 5843–5851 (2016).
[DOI:
10.1021/acs.cgd.6b00928]
Lukin, S. et al. Mechanochemical carbon–carbon bond formation that proceeds via a cocrystal intermediate. Chem. Commun. 54, 13216–13219 (2018).
[DOI:
10.1039/C8CC07853J]
Kulla, H., Greiser, S., Benemann, S., Rademann, K. & Emmerling, F. Knowing when to stop–trapping metastable polymorphs in mechanochemical reactions. Cryst. Growth Des. 17, 1190–1196 (2017).
[DOI:
10.1021/acs.cgd.6b01572]
Stolar, T. et al. In situ monitoring of the mechanosynthesis of the archetypal metal-organic framework HKUST-1: effect of liquid additives on the milling reactivity. Inorg. Chem. 56, 6599–6608 (2017).
[PMID:
28537382]
Fischer, F. et al. Polymorphism of mechanochemically synthesized cocrystals: a case study. Cryst. Growth Des. 16, 1701–1707 (2016).
[DOI:
10.1021/acs.cgd.5b01776]
Tireli, M. et al. Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chem. Commun. 51, 8058–8061 (2015).
[DOI:
10.1039/C5CC01915J]
Belenguer, A. M. et al. Understanding the influence of surface solvation and structure on polymorph stability: a combined mechanochemical and theoretical approach. J. Am. Chem. Soc. 140, 17051–17059 (2018).
[PMID:
30371073]
Andersen, J. M. & Mack, J. Decoupling the Arrhenius equation via mechanochemistry. Chem. Sci. 8, 5447–5453 (2017).
[PMID:
28970924]
Julien, P. A., Malvestiti, I. & Friščić, T. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy. Beilstein J. Org. Chem. 13, 2160–2168 (2017).
[PMID:
29114323]
Michalchuk, A. A. L., Tumanov, I. A. & Boldyreva, E. V. Ball size or ball mass—what matters in organic mechanochemical synthesis? CrystEngComm 21, 2174–2179 (2019).
[DOI:
10.1039/C8CE02109K]
Fischer, F., Fendel, N., Greiser, S., Rademann, K. & Emmerling, F. Impact Is important—systematic investigation of the influence of milling balls in mechanochemical reactions. Org. Process Res. Dev. 21, 655–659 (2017).
[DOI:
10.1021/acs.oprd.6b00435]
Kulla, H., Fischer, F., Benemann, S., Rademann, K. & Emmerling, F. The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD. CrystEngComm 19, 3902–3907 (2017).
[DOI:
10.1039/C7CE00502D]
Julien, P. A. et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J. Am. Chem. Soc. 138, 2929–2932 (2016).
[PMID:
26894258]
Wilke, M., Batzdorf, L., Fischer, F., Rademann, K. & Emmerling, F. Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. RSC Adv. 6, 36011–36019 (2016).
[DOI:
10.1039/C6RA01080F]
Lukin, S. et al. Solid-state supramolecular assembly of salicylic acid and 2-pyridone, 3-hydroxypyridine or 4-pyridone. Croat. Chem. Acta 90, 707–710 (2017).
[DOI:
10.5562/cca3339]
Bjelopetrović, A. et al. Mechanism of mechanochemical C–H bond activation in an azobenzene substrate by Pd(II) catalysts. Chem. Eur. J. 24, 10672–10682 (2018).
[PMID:
29917277]
Ardila‐Fierro, K. J. et al. Direct visualization of a mechanochemically induced molecular rearrangement. Angew. Chem. Int. Ed. 59, 13458–13462 (2020).
[DOI:
10.1002/anie.201914921]
Biliškov, N. et al. In‐situ and real‐time monitoring of mechanochemical preparation of LiMg(NHBH) and NaMg(NHBH) and their thermal dehydrogenation. Chem. Eur. J. 23, 16274–16282 (2017).
[PMID:
28902966]
Berry, D. J. et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 8, 1697–1712 (2008).
[DOI:
10.1021/cg800035w]
André, V. et al. Mechanosynthesis of the metallodrug bismuth subsalicylate from BiO and structure of bismuth salicylate without auxiliary organic ligands. Angew. Chem. Int. Ed. 50, 7858–7861 (2011).
[DOI:
10.1002/anie.201103171]
Trask, A. V., Motherwell, W. D. S. & Jones, W. Physical stability enhancement of theophylline via cocrystallization. Int. J. Pharm. 320, 114–123 (2006).
[PMID:
16769188]
Good, D. J. & Rodríguez-Hornedo, N. Solubility advantage of pharmaceutical cocrystals. Cryst. Growth Des. 9, 2252–2264 (2009).
[DOI:
10.1021/cg801039j]
Stolar, T. et al. Control of pharmaceutical cocrystal polymorphism on various scales by mechanochemistry: transfer from the laboratory batch to the large-scale extrusion processing. ACS Sustain. Chem. Eng. 7, 7102–7110 (2019).
[DOI:
10.1021/acssuschemeng.9b00043]
de Juan, A., Jaumot, J. & Tauler, R. Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal. Methods 6, 4964–4976 (2014).
[DOI:
10.1039/C4AY00571F]
Haferkamp, S., Paul, A., Michalchuk, A. A. L. & Emmerling, F. Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation. Beilstein J. Org. Chem. 15, 1141–1148 (2019).
[PMID:
31164950]
Leistenschneider, D. et al. Tailoring the porosity of a mesoporous carbon by a solvent-free mechanochemical approach. Carbon 147, 43–50 (2019).
[DOI:
10.1016/j.carbon.2019.02.065]
Šepelák, V., Bégin-Colin, S. & Le Caër, G. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 41, 11927–11948 (2012).
[PMID:
22875201]
Vogt, C. G. et al. Direct mechanocatalysis: palladium as milling media and catalyst in the mechanochemical suzuki polymerization. Angew. Chem. Int. Ed. 58, 18942–18947 (2019).
[DOI:
10.1002/anie.201911356]
Métro, T. –X., Gervais, C., Martinez, A., Bonhomme, C. & Laurencin, D. Unleashing the potential of ONMR spectroscopy using mechanochemistry. Angew. Chem. Int. Ed. 56, 6803–6807 (2017).
[DOI:
10.1002/anie.201702251]
Užarević, K. et al. Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal-organic frameworks. Chem. Sci. 9, 2525–2532 (2018).
[PMID:
29732130]
Belenguer, A. M., Lampronti, G. I. & Sanders, J. K. M. Reliable mechanochemistry: protocols for reproducible outcomes of neat and liquid assisted ball-mill grinding experiments. J. Vis. Exp. 131, (2018).
Eilers, P. H. C. & Boelens, H. F. M. Baseline correction with asymmetric least squares smoothing. Leiden University Medical Center Report, Leiden (2005).
Eilers, P. H. C. A perfect smoother. Anal. Chem. 75, 3631–3636 (2003).
[PMID:
14570219]