Base-catalyzed aryl halide isomerization enables the 4-selective substitution of 3-bromopyridines.

Thomas R Puleo, Jeffrey S Bandar
Author Information
  1. Thomas R Puleo: Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA jeff.bandar@colostate.edu.
  2. Jeffrey S Bandar: Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA jeff.bandar@colostate.edu. ORCID

Abstract

The base-catalyzed isomerization of simple aryl halides is presented and utilized to achieve the 4-selective etherification, hydroxylation and amination of 3-bromopyridines. Mechanistic studies support isomerization of 3-bromopyridines to 4-bromopyridines proceeds pyridyne intermediates and that 4-substitution selectivity is driven by a facile aromatic substitution reaction. Useful features of a tandem aryl halide isomerization/selective interception approach to aromatic functionalization are demonstrated. Example benefits include the use of readily available and stable 3-bromopyridines in place of less available and stable 4-halogenated congeners and the ability to converge mixtures of 3- and 5-bromopyridines to a single 4-substituted product.

References

Angew Chem Int Ed Engl. 2005 Jan 7;44(3):376-93 [PMID: 15558637]
Chem Rev. 2004 May;104(5):2631-66 [PMID: 15137803]
Science. 2002 Jan 11;295(5553):305-8 [PMID: 11719693]
Org Lett. 2018 May 4;20(9):2607-2610 [PMID: 29664307]
J Org Chem. 2014 Feb 7;79(3):846-51 [PMID: 24410270]
Chem Soc Rev. 2007 Jul;36(7):1046-57 [PMID: 17576473]
Chem Rev. 2014 Jun 11;114(11):5848-958 [PMID: 24750169]
J Org Chem. 2019 Apr 19;84(8):4904-4909 [PMID: 30339369]
J Am Chem Soc. 2016 Oct 26;138(42):13806-13809 [PMID: 27731999]
J Am Chem Soc. 2018 Jul 11;140(27):8551-8562 [PMID: 29906109]
J Org Chem. 1946 Jan;11:27-33 [PMID: 21013433]
Angew Chem Int Ed Engl. 2019 Nov 11;58(46):16368-16388 [PMID: 30990931]
J Am Chem Soc. 2020 Jun 24;142(25):11295-11305 [PMID: 32469220]
Org Lett. 2002 Jul 11;4(14):2385-8 [PMID: 12098253]
J Am Chem Soc. 2014 Oct 1;136(39):13657-65 [PMID: 25232890]
Angew Chem Int Ed Engl. 2017 Apr 18;56(17):4853-4857 [PMID: 28345205]
Angew Chem Int Ed Engl. 2012 Apr 2;51(14):3368-72 [PMID: 22359268]
J Am Chem Soc. 2019 Jan 9;141(1):127-132 [PMID: 30562018]
Chem Rev. 2019 Jun 26;119(12):7478-7528 [PMID: 31021606]
J Am Chem Soc. 2003 Jul 9;125(27):8082-3 [PMID: 12837060]
Org Lett. 2019 Jun 7;21(11):4383-4387 [PMID: 31141383]
Chem Rev. 2017 Jul 12;117(13):9302-9332 [PMID: 28445033]
Bioorg Med Chem Lett. 2006 Sep 1;16(17):4528-32 [PMID: 16797985]
Chem Rev. 2012 Jun 13;112(6):3550-77 [PMID: 22443517]
ACS Infect Dis. 2019 Jun 14;5(6):873-891 [PMID: 30983322]
Nat Chem. 2013 Jan;5(1):54-60 [PMID: 23247178]
Tetrahedron. 2015 Nov 18;71(46):8683-8716 [PMID: 26640303]
Angew Chem Int Ed Engl. 2018 Sep 17;57(38):12514-12518 [PMID: 30084203]
Angew Chem Int Ed Engl. 2018 May 22;57(21):6146-6149 [PMID: 29697174]
Chem Rev. 2011 Mar 9;111(3):2177-250 [PMID: 21391570]
J Org Chem. 2009 Nov 6;74(21):8309-13 [PMID: 19827765]
Org Lett. 2016 Apr 1;18(7):1530-3 [PMID: 27010921]
Angew Chem Int Ed Engl. 2012 Mar 12;51(11):2758-62 [PMID: 22307724]

Word Cloud

Similar Articles

Cited By