AI-guided discovery of the invariant host response to viral pandemics.

Debashis Sahoo, Gajanan D Katkar, Soni Khandelwal, Mahdi Behroozikhah, Amanraj Claire, Vanessa Castillo, Courtney Tindle, MacKenzie Fuller, Sahar Taheri, Thomas F Rogers, Nathan Beutler, Sydney I Ramirez, Stephen A Rawlings, Victor Pretorius, Davey M Smith, Dennis R Burton, Laura E Crotty Alexander, Jason Duran, Shane Crotty, Jennifer M Dan, Soumita Das, Pradipta Ghosh
Author Information
  1. Debashis Sahoo: Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0730, Leichtag Building 132, La Jolla, CA 92093-0831, USA; Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, USA; Moores Cancer Center, University of California San Diego, USA. Electronic address: dsahoo@ucsd.edu.
  2. Gajanan D Katkar: Department of Cellular and Molecular Medicine, University of California San Diego, USA.
  3. Soni Khandelwal: Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0730, Leichtag Building 132, La Jolla, CA 92093-0831, USA.
  4. Mahdi Behroozikhah: Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, USA.
  5. Amanraj Claire: Department of Cellular and Molecular Medicine, University of California San Diego, USA.
  6. Vanessa Castillo: Department of Cellular and Molecular Medicine, University of California San Diego, USA.
  7. Courtney Tindle: Department of Cellular and Molecular Medicine, University of California San Diego, USA.
  8. MacKenzie Fuller: Department of Cellular and Molecular Medicine, University of California San Diego, USA.
  9. Sahar Taheri: Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, USA.
  10. Thomas F Rogers: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
  11. Nathan Beutler: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
  12. Sydney I Ramirez: Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
  13. Stephen A Rawlings: Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
  14. Victor Pretorius: Department of Surgery, University of California San Diego, USA.
  15. Davey M Smith: Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
  16. Dennis R Burton: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
  17. Laura E Crotty Alexander: Pulmonary Critical Care Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, California; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
  18. Jason Duran: Division of Cardiology, Department of Internal Medicine, UC San Diego Medical Center, La Jolla 92037.
  19. Shane Crotty: Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
  20. Jennifer M Dan: Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
  21. Soumita Das: Department of Pathology, University of California San Diego, USA. Electronic address: sodas@ucsd.edu.
  22. Pradipta Ghosh: Moores Cancer Center, University of California San Diego, USA; Department of Cellular and Molecular Medicine, University of California San Diego, USA; Medicine, University of California San Diego, USA. Electronic address: prghosh@ucsd.edu.

Abstract

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach.
METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions.
FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity.
INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.
FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S.
C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists.
ONE SENTENCE SUMMARY: The host immune response in COVID-19.

Keywords

References

  1. Cell. 2013 Jul 3;154(1):197-212 [PMID: 23827683]
  2. J Cell Biochem Suppl. 1996;24:1-291 [PMID: 8965489]
  3. Curr Opin Genet Dev. 1999 Feb;9(1):69-75 [PMID: 10072359]
  4. Cell Res. 2013 Aug;23(8):986-93 [PMID: 23835475]
  5. Plant Direct. 2019 Mar 20;3(3):e00123 [PMID: 31245766]
  6. Am J Respir Crit Care Med. 2019 Jun 15;199(12):1537-1549 [PMID: 30562046]
  7. Genes Dev. 2009 Oct 15;23(20):2376-81 [PMID: 19833765]
  8. J Immunol. 2019 Sep 15;203(6):1609-1618 [PMID: 31427444]
  9. J Clin Invest. 1995 Dec;96(6):2578-82 [PMID: 8675621]
  10. Nat Biotechnol. 2011 Nov 13;29(12):1120-7 [PMID: 22081019]
  11. Nature. 2011 Apr 28;472(7344):481-5 [PMID: 21478870]
  12. Shock. 2016 Sep;46(3):239-48 [PMID: 27082314]
  13. Nat Commun. 2019 Jul 31;10(1):3422 [PMID: 31366921]
  14. Adv Biol Regul. 2020 Aug;77:100737 [PMID: 32773100]
  15. Crit Care. 2010;14(5):R167 [PMID: 20840779]
  16. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  17. J Glob Infect Dis. 2013 Jul;5(3):91-2 [PMID: 24049361]
  18. Front Cell Infect Microbiol. 2020 Feb 13;10:49 [PMID: 32117816]
  19. Nat Med. 2005 Jan;11(1):56-62 [PMID: 15619625]
  20. Nat Med. 2014 Sep;20(9):1043-9 [PMID: 25129481]
  21. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  22. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D562-6 [PMID: 15608262]
  23. J Clin Invest. 1997 Mar 1;99(5):937-43 [PMID: 9062351]
  24. J Virol. 2018 Jan 17;92(3): [PMID: 29167335]
  25. J Exp Med. 1994 Oct 1;180(4):1395-403 [PMID: 7523571]
  26. PLoS Pathog. 2015 Jun 12;11(6):e1004869 [PMID: 26070066]
  27. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  28. Curr Opin Pharmacol. 2006 Jun;6(3):271-6 [PMID: 16581295]
  29. Lancet. 2020 Feb 15;395(10223):e30-e31 [PMID: 32032529]
  30. Nucleic Acids Res. 2003 Feb 15;31(4):e15 [PMID: 12582260]
  31. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5732-7 [PMID: 20231483]
  32. Inflamm Allergy Drug Targets. 2014;13(4):224-34 [PMID: 25019157]
  33. N Engl J Med. 2012 Nov 8;367(19):1814-20 [PMID: 23075143]
  34. Virus Res. 2014 Jun 24;185:64-71 [PMID: 24662240]
  35. Curr Opin Immunol. 2010 Aug;22(4):475-81 [PMID: 20594815]
  36. Vaccines (Basel). 2021 Apr 24;9(5): [PMID: 33923159]
  37. Med Hypotheses. 2020 Apr 22;140:109777 [PMID: 32344314]
  38. Inflammation. 2011 Dec;34(6):609-13 [PMID: 21053061]
  39. PLoS One. 2014 May 06;9(5):e96801 [PMID: 24802416]
  40. Eur Respir J. 2021 Jul 1;58(1): [PMID: 33419885]
  41. Viruses. 2019 Mar 12;11(3): [PMID: 30870969]
  42. Mol Biol Cell. 2019 Jul 1;30(14):1770-1779 [PMID: 31091168]
  43. J Immunol. 2019 Dec 1;203(11):3000-3012 [PMID: 31645418]
  44. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93 [PMID: 15897467]
  45. Sci Rep. 2014 Nov 13;4:7027 [PMID: 25391767]
  46. Int Arch Allergy Immunol. 2004 Nov;135(3):235-42 [PMID: 15467375]
  47. Sci Transl Med. 2020 Apr 29;12(541): [PMID: 32253226]
  48. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2078-83 [PMID: 22308455]
  49. JCI Insight. 2018 Feb 8;3(3): [PMID: 29415897]
  50. BMJ Evid Based Med. 2020 Dec 11;: [PMID: 33310766]
  51. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  52. Cytokine. 2012 Sep;59(3):467-78 [PMID: 22704694]
  53. JCI Insight. 2021 Jan 11;6(1): [PMID: 33232303]
  54. Eur Respir J. 2012 Mar;39(3):712-20 [PMID: 21852331]
  55. Aging Dis. 2020 Mar 9;11(2):216-228 [PMID: 32257537]
  56. Science. 2020 Aug 21;369(6506):956-963 [PMID: 32540903]
  57. N Engl J Med. 2020 Mar 26;382(13):1268-1269 [PMID: 32109011]
  58. Nucleic Acids Res. 2007;35(11):3705-12 [PMID: 17517782]
  59. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  60. Nature. 2005 Jul 7;436(7047):112-6 [PMID: 16001071]
  61. PLoS One. 2015 Feb 23;10(2):e0118528 [PMID: 25706537]
  62. Br J Pharmacol. 2013 Jun;169(3):477-92 [PMID: 23488800]
  63. Cell Mol Immunol. 2020 Jun;17(6):613-620 [PMID: 32203189]
  64. Eur Respir J. 2016 Jan;47(1):212-22 [PMID: 26541527]
  65. Nat Microbiol. 2021 Jan;6(1):11-18 [PMID: 33273742]
  66. Cell Mol Immunol. 2020 May;17(5):533-535 [PMID: 32203188]
  67. Lancet. 2003 Oct 25;362(9393):1353-8 [PMID: 14585636]
  68. Sci Transl Med. 2019 Oct 23;11(515): [PMID: 31645453]
  69. Science. 2016 May 27;352(6289):aad7993 [PMID: 27127234]
  70. Lancet. 2020 Aug 22;396(10250):532-533 [PMID: 32798449]
  71. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  72. Curr Drug Targets. 2017;18(11):1301-1313 [PMID: 27469342]
  73. Can Vet J. 2010 Jan;51(1):56-62 [PMID: 20357942]
  74. Transl Res. 2020 Apr;218:16-28 [PMID: 31945316]
  75. N Engl J Med. 2009 Jun 18;360(25):2666-7 [PMID: 19423873]
  76. J Virol. 2019 Feb 19;93(5): [PMID: 30541850]
  77. Nat Rev Cardiol. 2014 Jul;11(7):413-26 [PMID: 24776703]
  78. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 [PMID: 29145629]
  79. Nat Med. 2005 Aug;11(8):875-9 [PMID: 16007097]
  80. J Biol Chem. 2018 Feb 16;293(7):2422-2437 [PMID: 29301935]
  81. N Engl J Med. 2005 Sep 29;353(13):1374-85 [PMID: 16192482]
  82. Am J Physiol Lung Cell Mol Physiol. 2018 Jan 01;314(1):L17-L31 [PMID: 28935640]
  83. Am J Respir Crit Care Med. 2020 Sep 1;202(5):753-755 [PMID: 32649217]
  84. AIDS Res Hum Retroviruses. 2016 Oct/Nov;32(10-11):1089-1096 [PMID: 27487965]
  85. Nat Rev Mol Cell Biol. 2013 Aug;14(8):518-28 [PMID: 23877564]
  86. Genome Biol. 2008 Oct 30;9(10):R157 [PMID: 18973690]
  87. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  88. N Engl J Med. 2016 Jan 21;374(3):211-22 [PMID: 26789870]
  89. J Virol. 2018 May 29;92(12): [PMID: 29593039]
  90. Oncotarget. 2018 Jan 5;9(5):6550-6561 [PMID: 29464091]
  91. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  92. Virology. 2007 Oct 25;367(2):367-74 [PMID: 17631932]
  93. Genes (Basel). 2019 Jul 12;10(7): [PMID: 31336988]
  94. BMC Med Genomics. 2020 Feb 17;13(1):28 [PMID: 32066441]
  95. J Virol. 2010 Jun;84(11):5574-82 [PMID: 20335267]
  96. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  97. Biochem Biophys Res Commun. 2004 Sep 3;321(4):994-1000 [PMID: 15358126]
  98. Annu Rev Immunol. 2014;32:513-45 [PMID: 24555472]
  99. J Infect Dis. 2012 Jul 15;206(2):167-77 [PMID: 22561366]
  100. Circ J. 2013;77(2):301-8 [PMID: 23328447]
  101. Immunol Cell Biol. 2011 Feb;89(2):216-24 [PMID: 20567250]

Grants

  1. R25 AI147376/NIAID NIH HHS
  2. R01 DK107585/NIDDK NIH HHS
  3. R01 GM138385/NIGMS NIH HHS
  4. UG3 TR003355/NCATS NIH HHS
  5. R01 AI155696/NIAID NIH HHS

MeSH Term

Angiotensin-Converting Enzyme 2
Animals
Antibodies, Neutralizing
Antiviral Agents
Artificial Intelligence
Autopsy
COVID-19
Cricetinae
Cytidine
Databases, Genetic
Disease Models, Animal
Gene Expression Profiling
Gene Regulatory Networks
Genetic Markers
Humans
Hydroxylamines
Interleukin-15
Lung
Mesocricetus
Pandemics
Receptors, Interleukin-15
Virus Diseases
COVID-19 Drug Treatment

Chemicals

Antibodies, Neutralizing
Antiviral Agents
Genetic Markers
Hydroxylamines
IL15 protein, human
IL15RA protein, human
Interleukin-15
Receptors, Interleukin-15
Cytidine
ACE2 protein, human
Angiotensin-Converting Enzyme 2
molnupiravir

Word Cloud

Similar Articles

Cited By