Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19.

Aaron J Wilk, Madeline J Lee, Bei Wei, Benjamin Parks, Ruoxi Pi, Giovanny J Martínez-Colón, Thanmayi Ranganath, Nancy Q Zhao, Shalina Taylor, Winston Becker, Stanford COVID-19 Biobank, David Jimenez-Morales, Andra L Blomkalns, Ruth O'Hara, Euan A Ashley, Kari C Nadeau, Samuel Yang, Susan Holmes, Marlene Rabinovitch, Angela J Rogers, William J Greenleaf, Catherine A Blish
Author Information
  1. Aaron J Wilk: Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA. ORCID
  2. Madeline J Lee: Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA. ORCID
  3. Bei Wei: Department of Genetics, Stanford University School of Medicine, Stanford, CA. ORCID
  4. Benjamin Parks: Department of Genetics, Stanford University School of Medicine, Stanford, CA. ORCID
  5. Ruoxi Pi: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  6. Giovanny J Martínez-Colón: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  7. Thanmayi Ranganath: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  8. Nancy Q Zhao: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  9. Shalina Taylor: Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. ORCID
  10. Winston Becker: Department of Genetics, Stanford University School of Medicine, Stanford, CA. ORCID
  11. David Jimenez-Morales: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  12. Andra L Blomkalns: Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  13. Ruth O'Hara: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA. ORCID
  14. Euan A Ashley: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  15. Kari C Nadeau: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  16. Samuel Yang: Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  17. Susan Holmes: Department of Statistics, Stanford University, Stanford, CA. ORCID
  18. Marlene Rabinovitch: Department of Pediatrics, Stanford University School of Medicine, Stanford, CA. ORCID
  19. Angela J Rogers: Department of Medicine, Stanford University School of Medicine, Stanford, CA. ORCID
  20. William J Greenleaf: Department of Genetics, Stanford University School of Medicine, Stanford, CA. ORCID
  21. Catherine A Blish: Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA. ORCID

Abstract

Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.

References

  1. Immunity. 2017 May 16;46(5):835-848.e4 [PMID: 28514689]
  2. J Exp Med. 2010 Aug 30;207(9):1853-62 [PMID: 20733033]
  3. J Immunol. 1993 Sep 1;151(5):2511-20 [PMID: 8103068]
  4. Int J Mol Sci. 2019 Jul 30;20(15): [PMID: 31366013]
  5. Cell Mol Immunol. 2020 Aug;17(8):887-888 [PMID: 32382131]
  6. Sci Immunol. 2020 Feb 21;5(44): [PMID: 32086381]
  7. J Appl Physiol (1985). 2005 May;98(5):1930-9 [PMID: 15640383]
  8. J Immunol Res. 2019 Sep 12;2019:8028725 [PMID: 31612153]
  9. J Immunol. 2010 Mar 1;184(5):2247-51 [PMID: 20130216]
  10. Front Immunol. 2020 Aug 18;11:2063 [PMID: 33013872]
  11. Front Immunol. 2020 Jul 16;11:1513 [PMID: 32765522]
  12. Nat Genet. 2021 Mar;53(3):403-411 [PMID: 33633365]
  13. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  14. Front Immunol. 2019 Jun 07;10:1312 [PMID: 31231400]
  15. Blood. 2020 Sep 3;136(10):1169-1179 [PMID: 32597954]
  16. PLoS One. 2013 Aug 28;8(8):e72249 [PMID: 24015224]
  17. J Thromb Haemost. 2016 Mar;14(3):551-8 [PMID: 26712312]
  18. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  19. Int J Mol Sci. 2018 Sep 18;19(9): [PMID: 30231586]
  20. Cell Host Microbe. 2020 Oct 7;28(4):516-525.e5 [PMID: 32941787]
  21. Nat Med. 2020 Mar;26(3):333-340 [PMID: 32066974]
  22. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  23. Genome Med. 2021 Jan 13;13(1):7 [PMID: 33441124]
  24. Nat Immunol. 2019 Mar;20(3):326-336 [PMID: 30778252]
  25. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  26. Exp Hematol. 2008 Oct;36(10):1377-89 [PMID: 18922365]
  27. Am J Respir Crit Care Med. 2016 Oct 15;194(8):961-973 [PMID: 27064380]
  28. Sci Immunol. 2020 Aug 21;5(50): [PMID: 32826343]
  29. PLoS Comput Biol. 2014 Jul 24;10(7):e1003731 [PMID: 25058159]
  30. Nat Commun. 2021 Mar 5;12(1):1428 [PMID: 33674591]
  31. J Exp Med. 2020 Dec 7;217(12): [PMID: 32926097]
  32. Nat Genet. 2021 Mar;53(3):322-331 [PMID: 33649593]
  33. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a000232 [PMID: 20457557]
  34. J Virol. 2014 Sep 1;88(17):9934-46 [PMID: 24942581]
  35. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  36. Immunology. 2000 May;100(1):63-9 [PMID: 10809960]
  37. Nat Rev Immunol. 2008 Jan;8(1):34-47 [PMID: 18064051]
  38. Nat Rev Neurol. 2016 Mar;12(3):127 [PMID: 26891770]
  39. Immunity. 2020 Oct 13;53(4):878-894.e7 [PMID: 33053333]
  40. Curr Biol. 2018 Sep 24;28(18):2910-2920.e2 [PMID: 30220501]
  41. Science. 2017 Apr 21;356(6335): [PMID: 28428369]
  42. Curr Opin Hematol. 2018 Jan;25(1):37-43 [PMID: 29035909]
  43. Oncogene. 2013 Jul 18;32(29):3397-409 [PMID: 23246969]
  44. Cell. 2021 Jan 7;184(1):169-183.e17 [PMID: 33296701]
  45. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  46. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  47. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  48. Sci Immunol. 2020 Dec 7;5(54): [PMID: 33288645]
  49. Blood Adv. 2021 Mar 9;5(5):1164-1177 [PMID: 33635335]
  50. J Exp Med. 2020 Dec 7;217(12): [PMID: 32926098]
  51. J Immunol. 2003 Mar 15;170(6):3233-42 [PMID: 12626582]
  52. Nat Med. 2020 Apr;26(4):511-518 [PMID: 32251406]
  53. J Vis Exp. 2020 Nov 19;(165): [PMID: 33283785]
  54. Viruses. 2019 Jan 09;11(1): [PMID: 30634396]
  55. Nature. 2021 Mar;591(7848):92-98 [PMID: 33307546]
  56. Nat Protoc. 2015 Feb;10(2):316-33 [PMID: 25612231]
  57. PLoS One. 2012;7(1):e29443 [PMID: 22238612]
  58. Cytometry A. 2020 Mar;97(3):268-278 [PMID: 31633883]
  59. Immunol Rev. 2014 Sep;261(1):126-40 [PMID: 25123281]
  60. Science. 2020 Aug 7;369(6504):706-712 [PMID: 32527925]
  61. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  62. Int J Mol Sci. 2017 Aug 02;18(8): [PMID: 28767057]
  63. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  64. Mol Cell Biol. 1993 Oct;13(10):6231-40 [PMID: 8413223]
  65. Science. 2019 Aug 16;365(6454): [PMID: 31320558]
  66. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  67. Genome Biol. 2018 Jun 19;19(1):78 [PMID: 29921301]
  68. Cell Stem Cell. 2015 Mar 5;16(3):302-13 [PMID: 25704240]
  69. JCI Insight. 2020 Sep 3;5(17): [PMID: 32706339]
  70. JCI Insight. 2018 Apr 19;3(8): [PMID: 29669928]
  71. Cytometry A. 2013 May;83(5):483-94 [PMID: 23512433]
  72. Nat Biotechnol. 2019 Dec;37(12):1458-1465 [PMID: 31792411]
  73. Front Immunol. 2017 Oct 13;8:1300 [PMID: 29081778]
  74. Nat Methods. 2017 Oct;14(10):975-978 [PMID: 28825706]
  75. BMC Genomics. 2006 May 16;7:115 [PMID: 16704732]
  76. Mol Cell. 2017 Sep 21;67(6):1037-1048.e6 [PMID: 28890333]
  77. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  78. Immunity. 2018 Feb 20;48(2):364-379.e8 [PMID: 29466759]
  79. Nat Commun. 2019 Mar 21;10(1):1322 [PMID: 30899022]
  80. Stroke. 2016 Mar;47(3):652-8 [PMID: 26846866]
  81. Nat Rev Immunol. 2020 Nov;20(11):709-713 [PMID: 33024281]
  82. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  83. Front Immunol. 2018 Apr 09;9:486 [PMID: 29686665]
  84. Science. 2018 Oct 26;362(6413): [PMID: 30361341]
  85. Nat Rev Immunol. 2009 Oct;9(10):692-703 [PMID: 19859064]
  86. Immunity. 2020 May 19;52(5):731-733 [PMID: 32325025]
  87. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  88. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  89. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  90. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  91. J Virol. 2006 Aug;80(15):7481-90 [PMID: 16840328]
  92. F1000Res. 2018 Aug 15;7:1297 [PMID: 30228881]
  93. Virology. 2017 Jul;507:1-10 [PMID: 28384506]
  94. Nat Biotechnol. 2018 Jan;36(1):89-94 [PMID: 29227470]
  95. Front Immunol. 2018 Mar 13;9:302 [PMID: 29593707]
  96. Science. 2009 Mar 27;323(5922):1722-5 [PMID: 19264983]
  97. Nat Rev Immunol. 2020 Oct;20(10):585-586 [PMID: 32788708]
  98. Immunity. 2016 Dec 20;45(6):1270-1284 [PMID: 27939671]
  99. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  100. Antiviral Res. 2018 Sep;157:9-17 [PMID: 29983395]
  101. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  102. Immunity. 2006 Jan;24(1):19-28 [PMID: 16413920]
  103. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  104. Front Immunol. 2018 Jul 03;9:1521 [PMID: 30018617]
  105. Cell Rep. 2019 Feb 5;26(6):1627-1640.e7 [PMID: 30726743]
  106. Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3105-16 [PMID: 26211453]
  107. JCI Insight. 2020 Jun 4;5(11): [PMID: 32329756]
  108. Bioinformatics. 2020 May 1;36(9):2778-2786 [PMID: 31971583]
  109. Nat Immunol. 2020 Sep;21(9):1119-1133 [PMID: 32719519]
  110. Med Hypotheses. 2020 Jul;140:109749 [PMID: 32339777]
  111. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  112. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  113. Biochim Biophys Acta. 2014 Nov;1843(11):2754-2764 [PMID: 25116307]
  114. Immunity. 2021 Apr 13;54(4):753-768.e5 [PMID: 33765435]
  115. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a001651 [PMID: 20457564]
  116. Cell Mol Immunol. 2020 May;17(5):541-543 [PMID: 32203186]
  117. Nat Immunol. 2017 Sep;18(9):1016-1024 [PMID: 28692065]
  118. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  119. Immunogenetics. 2011 Jun;63(6):337-50 [PMID: 21369783]
  120. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  121. Cell Mol Life Sci. 2015 Jun;72(12):2349-60 [PMID: 25715742]
  122. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  123. Cell Host Microbe. 2020 Jun 10;27(6):879-882.e2 [PMID: 32359396]
  124. Cell Rep. 2017 May 23;19(8):1710-1722 [PMID: 28538187]
  125. Signal Transduct Target Ther. 2017;2: [PMID: 29158945]
  126. Cell Mol Immunol. 2020 Jan;17(1):95-107 [PMID: 30842629]
  127. Nat Methods. 2017 Apr;14(4):395-398 [PMID: 28192419]
  128. J Exp Med. 2020 Jun 1;217(6): [PMID: 32302401]
  129. ACS Cent Sci. 2021 Apr 28;7(4):650-657 [PMID: 34056095]
  130. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  131. Nature. 2020 Aug;584(7821):425-429 [PMID: 32604404]
  132. Immunity. 2015 Dec 15;43(6):1199-211 [PMID: 26682989]
  133. Nat Commun. 2019 Feb 8;10(1):687 [PMID: 30737409]
  134. Cell Mol Immunol. 2021 Mar;18(3):604-612 [PMID: 33060840]
  135. PLoS One. 2011;6(7):e22043 [PMID: 21779371]
  136. Genes Dev. 2008 May 1;22(9):1174-89 [PMID: 18451107]
  137. J Immunol. 2009 Oct 15;183(8):4921-30 [PMID: 19801517]
  138. Cell Syst. 2021 Jan 20;12(1):23-40.e7 [PMID: 33096026]

Grants

  1. RM1 HG007735/NHGRI NIH HHS
  2. T32 GM007365/NIGMS NIH HHS
  3. T32 AI007290/NIAID NIH HHS
  4. U19 AI057266/NIAID NIH HHS
  5. K23 HL125663/NHLBI NIH HHS
  6. DP1 DA046089/NIDA NIH HHS
  7. UM1 HG009436/NHGRI NIH HHS
  8. UM1 HG009442/NHGRI NIH HHS
  9. R01 HD103571/NICHD NIH HHS
  10. R25 GM086262/NIGMS NIH HHS
  11. P50 HG007735/NHGRI NIH HHS

MeSH Term

Adult
Aged
COVID-19
Case-Control Studies
Cytokines
Epigenesis, Genetic
Female
Hematopoiesis
Humans
Immunity, Innate
Killer Cells, Natural
Male
Middle Aged
Monocytes
NF-kappa B
Neutrophils
Proteomics
Severity of Illness Index
Single-Cell Analysis

Chemicals

Cytokines
NF-kappa B

Word Cloud

Similar Articles

Cited By