Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis.

Sanghwa Lee, Wenli Wang, Enamul Huq
Author Information
  1. Sanghwa Lee: Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. ORCID
  2. Wenli Wang: Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. ORCID
  3. Enamul Huq: Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. huq@austin.utexas.edu. ORCID

Abstract

Plants respond to high ambient temperature by implementing a suite of morphological changes collectively termed thermomorphogenesis. Here we show that the above and below ground tissue-response to high ambient temperature are mediated by distinct transcription factors. While the central hub transcription factor, PHYTOCHROME INTERCTING FACTOR 4 (PIF4) regulates the above ground tissue response, the below ground root elongation is primarily regulated by ELONGATED HYPOCOTYL 5 (HY5). Plants respond to high temperature by largely expressing distinct sets of genes in a tissue-specific manner. HY5 promotes root thermomorphogenesis via directly controlling the expression of many genes including the auxin and BR pathway genes. Strikingly, the above and below ground thermomorphogenesis is impaired in spaQ. Because SPA1 directly phosphorylates PIF4 and HY5, SPAs might control the stability of PIF4 and HY5 to regulate thermomorphogenesis in both tissues. These data collectively suggest that plants employ distinct combination of SPA-PIF4-HY5 module to regulate tissue-specific thermomorphogenesis.

References

  1. Physiol Plant. 2020 Jul;169(3):347-356 [PMID: 32181879]
  2. PLoS Genet. 2021 Jun 1;17(6):e1009595 [PMID: 34061850]
  3. Plant Cell. 2013 Sep;25(9):3424-33 [PMID: 24003052]
  4. Curr Biol. 2016 Mar 7;26(5):640-6 [PMID: 26877080]
  5. Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20231-5 [PMID: 22123947]
  6. Mol Ecol Resour. 2016 Nov;16(6):1315-1321 [PMID: 27037501]
  7. New Phytol. 2021 Jun;230(6):2311-2326 [PMID: 33686674]
  8. Plant Cell. 2007 Mar;19(3):731-49 [PMID: 17337630]
  9. Science. 2016 Nov 18;354(6314):897-900 [PMID: 27789798]
  10. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  11. EMBO J. 2000 Sep 15;19(18):4997-5006 [PMID: 10990463]
  12. Plant Commun. 2020 Sep 14;1(5): [PMID: 32995748]
  13. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3893-3898 [PMID: 30755525]
  14. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  15. Mol Plant. 2020 Mar 2;13(3):459-470 [PMID: 31954919]
  16. Nat Commun. 2014 Nov 17;5:5473 [PMID: 25400039]
  17. Plant Cell Environ. 2019 Jan;42(1):337-353 [PMID: 30132918]
  18. Plant Signal Behav. 2013 Aug;8(8): [PMID: 23759547]
  19. Cell Rep. 2017 Jan 10;18(2):344-351 [PMID: 28076780]
  20. Development. 2020 Dec 15;147(24): [PMID: 33144393]
  21. iScience. 2019 May 31;15:600-610 [PMID: 31078553]
  22. Nat Commun. 2016 Jan 05;7:10269 [PMID: 26728313]
  23. Annu Rev Plant Biol. 2019 Apr 29;70:321-346 [PMID: 30786235]
  24. Plant J. 2009 Nov;60(4):589-601 [PMID: 19686536]
  25. Curr Biol. 2019 Dec 16;29(24):R1326-R1338 [PMID: 31846685]
  26. Nat Commun. 2019 Sep 16;10(1):4216 [PMID: 31527679]
  27. Curr Biol. 2015 Jan 19;25(2):194-199 [PMID: 25557663]
  28. PLoS Genet. 2014 Jun 12;10(6):e1004416 [PMID: 24922306]
  29. Plant Cell. 2013 May;25(5):1657-73 [PMID: 23645630]
  30. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  31. Nat Genet. 2013 Sep;45(9):1097-102 [PMID: 23913002]
  32. Curr Biol. 2015 Jan 19;25(2):187-193 [PMID: 25557667]
  33. Cell Rep. 2014 Dec 24;9(6):1983-9 [PMID: 25533339]
  34. Curr Biol. 2009 Mar 10;19(5):408-13 [PMID: 19249207]
  35. Nature. 2000 May 25;405(6785):462-6 [PMID: 10839542]
  36. New Phytol. 2019 Feb;221(3):1215-1229 [PMID: 30289568]
  37. Science. 2016 Nov 18;354(6314):886-889 [PMID: 27789797]
  38. Nat Plants. 2020 May;6(5):522-532 [PMID: 32284544]
  39. Mol Plant. 2015 Aug;8(8):1153-64 [PMID: 25983207]
  40. Nat Commun. 2017 Aug 21;8(1):309 [PMID: 28827608]
  41. Genes Dev. 1997 Nov 15;11(22):2983-95 [PMID: 9367981]
  42. Sci Rep. 2015 Jul 24;5:12477 [PMID: 26207341]
  43. Cell Rep. 2018 Nov 13;25(7):1718-1728.e4 [PMID: 30428343]
  44. Plant Cell. 2020 Apr;32(4):967-983 [PMID: 32086365]
  45. Plant Cell. 2013 Jun;25(6):2102-14 [PMID: 23757399]
  46. Nat Plants. 2016 Jan 06;2:15190 [PMID: 27250752]
  47. Nature. 2020 Sep;585(7824):256-260 [PMID: 32848244]
  48. Development. 2020 Oct 8;147(19): [PMID: 32994167]
  49. New Phytol. 2020 Apr;226(1):50-58 [PMID: 31705802]
  50. Nat Commun. 2016 Dec 14;7:13692 [PMID: 27966533]
  51. iScience. 2019 May 31;15:611-622 [PMID: 31078552]
  52. Plant J. 2011 Feb;65(3):346-58 [PMID: 21265889]

Grants

  1. R01 GM114297/NIGMS NIH HHS

MeSH Term

Arabidopsis
Arabidopsis Proteins
Basic Helix-Loop-Helix Transcription Factors
Basic-Leucine Zipper Transcription Factors
Brassinosteroids
Cell Cycle Proteins
Gene Expression Regulation, Plant
Hot Temperature
Morphogenesis
Phosphorylation
Plant Roots
Plant Shoots
Seedlings

Chemicals

Arabidopsis Proteins
Basic Helix-Loop-Helix Transcription Factors
Basic-Leucine Zipper Transcription Factors
Brassinosteroids
Cell Cycle Proteins
HY5 protein, Arabidopsis
PIF4 protein, Arabidopsis
SPA1 protein, Arabidopsis