Ketogenic diet restrains aging-induced exacerbation of coronavirus infection in mice.

Seungjin Ryu, Irina Shchukina, Yun-Hee Youm, Hua Qing, Brandon Hilliard, Tamara Dlugos, Xinbo Zhang, Yuki Yasumoto, Carmen J Booth, Carlos Fern��ndez-Hernando, Yajaira Su��rez, Kamal Khanna, Tamas L Horvath, Marcelo O Dietrich, Maxim Artyomov, Andrew Wang, Vishwa Deep Dixit
Author Information
  1. Seungjin Ryu: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States. ORCID
  2. Irina Shchukina: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.
  3. Yun-Hee Youm: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  4. Hua Qing: Department of Internal Medicine, Yale School of Medicine, New Haven, United States.
  5. Brandon Hilliard: Department of Internal Medicine, Yale School of Medicine, New Haven, United States.
  6. Tamara Dlugos: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  7. Xinbo Zhang: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  8. Yuki Yasumoto: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  9. Carmen J Booth: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  10. Carlos Fern��ndez-Hernando: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  11. Yajaira Su��rez: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States.
  12. Kamal Khanna: Department of Microbiology, New York University Langone Health, New York, United States.
  13. Tamas L Horvath: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States. ORCID
  14. Marcelo O Dietrich: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States. ORCID
  15. Maxim Artyomov: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.
  16. Andrew Wang: Department of Immunobiology, Yale School of Medicine, New Haven, United States. ORCID
  17. Vishwa Deep Dixit: Department of Comparative Medicine, Yale School of Medicine, New Haven, United States. ORCID

Abstract

Increasing age is the strongest predictor of risk of COVID-19 severity and mortality. Immunometabolic switch from glycolysis to ketolysis protects against inflammatory damage and influenza infection in adults. To investigate how age compromises defense against coronavirus infection, and whether a pro-longevity ketogenic diet (KD) impacts immune surveillance, we developed an aging model of natural murine beta coronavirus (mCoV) infection with mouse hepatitis virus strain-A59 (MHV-A59). When inoculated intranasally, mCoV is pneumotropic and recapitulates several clinical hallmarks of COVID-19 infection. Aged mCoV-A59-infected mice have increased mortality and higher systemic inflammation in the heart, adipose tissue, and hypothalamus, including neutrophilia and loss of ���� T cells in lungs. Activation of ketogenesis in aged mice expands tissue protective ���� T cells, deactivates the NLRP3 inflammasome, and decreases pathogenic monocytes in lungs of infected aged mice. These data establish harnessing of the ketogenic immunometabolic checkpoint as a potential treatment against coronavirus infection in the aged.

Keywords

Associated Data

GEO | GSE155346; GSE155347

References

  1. J Cell Mol Med. 2020 Oct;24(19):11603-11606 [PMID: 32864865]
  2. Science. 2020 Jul 17;369(6501):256-257 [PMID: 32675364]
  3. J Virol. 2009 Sep;83(17):8946-56 [PMID: 19553337]
  4. Cell Metab. 2017 Feb 7;25(2):262-284 [PMID: 28178565]
  5. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  6. Nat Immunol. 2020 Nov;21(11):1327-1335 [PMID: 32839612]
  7. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  8. Annu Rev Nutr. 2017 Aug 21;37:51-76 [PMID: 28826372]
  9. Front Immunol. 2014 Sep 02;5:420 [PMID: 25228902]
  10. Lab Invest. 1995 Nov;73(5):615-27 [PMID: 7474935]
  11. Nat Rev Immunol. 2019 Sep;19(9):573-583 [PMID: 31186548]
  12. NCHS Data Brief. 2020 Feb;(360):1-8 [PMID: 32487284]
  13. PLoS Pathog. 2015 Sep 24;11(9):e1005153 [PMID: 26402858]
  14. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  15. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  16. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  17. Cell. 2020 Aug 6;182(3):744-753.e4 [PMID: 32553273]
  18. Sci Immunol. 2019 Nov 15;4(41): [PMID: 31732517]
  19. Cell. 2019 Aug 22;178(5):1088-1101.e15 [PMID: 31442402]
  20. Cell Metab. 2019 Feb 5;29(2):383-398.e7 [PMID: 30449686]
  21. Cell Rep. 2017 Feb 28;18(9):2077-2087 [PMID: 28249154]
  22. Cell Metab. 2020 Sep 1;32(3):437-446.e5 [PMID: 32697943]
  23. Nat Med. 2015 Mar;21(3):263-9 [PMID: 25686106]
  24. Lab Anim Sci. 1993 Feb;43(1):15-28 [PMID: 8384676]
  25. Elife. 2021 Jun 21;10: [PMID: 34151773]
  26. Diabetes Care. 2020 Jul;43(7):1392-1398 [PMID: 32409502]
  27. Nat Microbiol. 2019 May;4(5):789-799 [PMID: 30804542]
  28. Virol Sin. 2014 Dec;29(6):393-402 [PMID: 25547683]
  29. Immunol Rev. 2015 May;265(1):63-74 [PMID: 25879284]
  30. Obesity (Silver Spring). 2020 Jul;28(7):1187-1190 [PMID: 32339391]
  31. Lancet Infect Dis. 2021 Apr;21(4):e69-e70 [PMID: 32679085]
  32. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5444-E5453 [PMID: 28630327]
  33. J Immunol. 2016 Oct 1;197(7):2900-8 [PMID: 27566828]
  34. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  35. Cell. 2019 Aug 22;178(5):1102-1114.e17 [PMID: 31442403]
  36. Comp Med. 2003 Apr;53(2):197-206 [PMID: 12784855]
  37. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  38. BMJ. 2020 Mar 26;368:m1091 [PMID: 32217556]
  39. Cell. 2017 May 4;169(4):570-586 [PMID: 28475890]
  40. Nat Metab. 2020 Jan;2(1):50-61 [PMID: 32694683]
  41. Nature. 2017 Oct 5;550(7674):119-123 [PMID: 28953873]
  42. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  43. IUBMB Life. 2017 May;69(5):305-314 [PMID: 28371201]
  44. J Virol. 2006 Nov;80(21):10382-94 [PMID: 17041219]
  45. Immunol Rev. 2020 Jul;296(1):142-154 [PMID: 32484934]
  46. Cell. 2020 Aug 6;182(3):734-743.e5 [PMID: 32643603]
  47. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  48. Nature. 2020 Oct;586(7830):560-566 [PMID: 32854108]
  49. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  50. Nat Rev Immunol. 2020 Feb;20(2):79-80 [PMID: 31892735]
  51. Cell Metab. 2013 Oct 1;18(4):519-32 [PMID: 24093676]
  52. Cell Mol Immunol. 2020 Jul;17(7):771-772 [PMID: 32467616]
  53. J Exp Med. 2020 Dec 7;217(12): [PMID: 32750141]
  54. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  55. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  56. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  57. J Biol Chem. 2020 Oct 9;295(41):14040-14052 [PMID: 32763970]
  58. Neurology. 1984 May;34(5):597-603 [PMID: 6324031]
  59. FASEB J. 2019 Aug;33(8):8865-8877 [PMID: 31034780]
  60. Cell Death Discov. 2019 Jun 5;5:101 [PMID: 31231549]
  61. J Virol. 2001 Mar;75(5):2452-7 [PMID: 11160748]
  62. Immunity. 2020 Sep 15;53(3):510-523 [PMID: 32937152]

Grants

  1. R01 AR070811/NIAMS NIH HHS
  2. AR070811/NIAMS NIH HHS
  3. Glenn Foundation for Medical Research Postdoctoral Fellowships in Aging Research/American Federation for Aging Research
  4. UL1 TR001863/NCATS NIH HHS
  5. MF200400809/G. Harold and Leila Y. Mathers Charitable Foundation
  6. P30 DK056341/NIDDK NIH HHS
  7. P01 AG051459/NIA NIH HHS
  8. P01AG051459/NIA NIH HHS
  9. K08 AI128745/NIAID NIH HHS
  10. R35 HL155988/NHLBI NIH HHS
  11. 1K08AI128745/National Institute of Allergy and Infectious Diseases

MeSH Term

Age Factors
Aging
Animals
COVID-19
Coronavirus Infections
Diet, Ketogenic
Disease Models, Animal
Glycolysis
Humans
Inflammasomes
Ketone Bodies
Male
Mice
Mice, Inbred C57BL
Murine hepatitis virus
NLR Family, Pyrin Domain-Containing 3 Protein
SARS-CoV-2

Chemicals

Inflammasomes
Ketone Bodies
NLR Family, Pyrin Domain-Containing 3 Protein
Nlrp3 protein, mouse