Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients.

Yasutaka Mitamura, Daniel Schulz, Saskia Oro, Nick Li, Isabel Kolm, Claudia Lang, Reihane Ziadlou, Ge Tan, Bernd Bodenmiller, Peter Steiger, Angelo Marzano, Nicolas de Prost, Olivier Caudin, Mitchell Levesque, Corinne Stoffel, Peter Schmid-Grendelmeier, Emanual Maverakis, Cezmi A Akdis, Marie-Charlotte Brüggen
Author Information
  1. Yasutaka Mitamura: Swiss Institute for Allergy Research (SIAF) Davos, Davos, Switzerland. ORCID
  2. Daniel Schulz: Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
  3. Saskia Oro: Department of Dermatology, Henri Mondor Hospital, Paris, France.
  4. Nick Li: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  5. Isabel Kolm: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  6. Claudia Lang: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  7. Reihane Ziadlou: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  8. Ge Tan: Swiss Institute for Allergy Research (SIAF) Davos, Davos, Switzerland. ORCID
  9. Bernd Bodenmiller: Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
  10. Peter Steiger: Faculty of Medicine, University Zurich, Zurich, Switzerland.
  11. Angelo Marzano: Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
  12. Nicolas de Prost: Department of Dermatology, Henri Mondor Hospital, Paris, France.
  13. Olivier Caudin: Department of Dermatology, Henri Mondor Hospital, Paris, France.
  14. Mitchell Levesque: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  15. Corinne Stoffel: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
  16. Peter Schmid-Grendelmeier: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland. ORCID
  17. Emanual Maverakis: Department of Dermatology, University of California, Davis, Sacramento, CA, USA.
  18. Cezmi A Akdis: Swiss Institute for Allergy Research (SIAF) Davos, Davos, Switzerland. ORCID
  19. Marie-Charlotte Brüggen: Department of Dermatology, University Hospital Zurich, Zurich, Switzerland. ORCID

Abstract

BACKGROUND: Coronavirus disease-2019 (COVID-19) has been associated with cutaneous findings, some being the result of drug hypersensitivity reactions such as maculopapular drug rashes (MDR). The aim of this study was to investigate whether COVID-19 may impact the development of the MDR.
METHODS: Blood and skin samples from COVID-19 patients (based on a positive nasopharyngeal PCR) suffering from MDR (COVID-MDR), healthy controls, non-COVID-19-related patients with drug rash with eosinophilia and systemic symptoms (DRESS), and MDR were analyzed. We utilized imaging mass cytometry (IMC) to characterize the cellular infiltrate in skin biopsies. Furthermore, RNA sequencing transcriptome of skin biopsy samples and high-throughput multiplexed proteomic profiling of serum were performed.
RESULTS: IMC revealed by clustering analyses a more prominent, phenotypically shifted cytotoxic CD8 T cell population and highly activated monocyte/macrophage (Mo/Mac) clusters in COVID-MDR. The RNA sequencing transcriptome demonstrated a more robust cytotoxic response in COVID-MDR skin. However, severe acute respiratory syndrome coronavirus 2 was not detected in skin biopsies at the time point of MDR diagnosis. Serum proteomic profiling of COVID-MDR patients revealed upregulation of various inflammatory mediators (IL-4, IL-5, IL-6, TNF, and IFN-γ), eosinophil and Mo/Mac -attracting chemokines (MCP-2, MCP-3, MCP-4 and CCL11). Proteomics analyses demonstrated a massive systemic cytokine storm in COVID-MDR compared with the relatively milder cytokine storm observed in DRESS, while MDR did not exhibit such features.
CONCLUSION: A systemic cytokine storm may promote activation of Mo/Mac and cytotoxic CD8 T cells in severe COVID-19 patients, which in turn may impact the development of MDR.

Keywords

References

  1. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  2. PLoS One. 2014 Apr 22;9(4):e95192 [PMID: 24755770]
  3. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  4. Allergy. 2020 Oct;75(10):2445-2476 [PMID: 32584441]
  5. Lancet. 2020 Aug 29;396(10251):598-599 [PMID: 32798450]
  6. J Allergy Clin Immunol Pract. 2021 Jan;9(1):481-483.e2 [PMID: 33039646]
  7. J Eur Acad Dermatol Venereol. 2021 Feb;35(2):e140-e142 [PMID: 32780875]
  8. Allergy. 2020 Nov;75(11):2829-2845 [PMID: 32496587]
  9. J Allergy Clin Immunol. 2020 Oct;146(4):786-789 [PMID: 32710973]
  10. Allergy. 2020 Jul;75(7):1730-1741 [PMID: 32077115]
  11. Allergy. 2022 Feb;77(2):595-608 [PMID: 34157151]
  12. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]
  13. Clin Exp Allergy. 2004 Oct;34(10):1597-601 [PMID: 15479276]
  14. Br J Dermatol. 2020 Jul;183(1):71-77 [PMID: 32348545]
  15. J Am Acad Dermatol. 2020 Jul;83(1):280-285 [PMID: 32305439]
  16. J Eur Acad Dermatol Venereol. 2020 Jul;34(7):e299-e300 [PMID: 32314436]
  17. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  18. Allergy. 2021 Mar;76(3):698-713 [PMID: 32658359]
  19. J Clin Med. 2021 Feb 25;10(5): [PMID: 33668766]
  20. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  21. Am J Clin Dermatol. 2019 Apr;20(2):217-236 [PMID: 30652265]
  22. JAMA Intern Med. 2020 Sep 1;180(9):1152-1154 [PMID: 32602883]
  23. J Invest Dermatol. 2021 Jan;141(1):206-209.e1 [PMID: 32454066]
  24. Atherosclerosis. 2015 Sep;242(1):205-10 [PMID: 26204497]
  25. Eur J Dermatol. 2018 Feb 1;28(1):13-25 [PMID: 29521632]
  26. Allergy. 2020 Oct;75(10):2503-2541 [PMID: 32535955]
  27. JCI Insight. 2020 Jul 9;5(13): [PMID: 32544099]
  28. J Allergy Clin Immunol Pract. 2017 May - Jun;5(3):547-563 [PMID: 28483310]
  29. J Invest Dermatol. 2019 Sep;139(9):2052-2055.e7 [PMID: 30974167]
  30. Allergy. 2020 Jul;75(7):1564-1581 [PMID: 32396996]
  31. Clin Exp Allergy. 2018 Mar;48(3):325-333 [PMID: 29265576]
  32. Br J Dermatol. 2007 Mar;156(3):609-11 [PMID: 17300272]
  33. Front Immunol. 2020 Sep 24;11:558898 [PMID: 33072097]
  34. Lancet. 2020 Jun 6;395(10239):1763-1770 [PMID: 32442528]
  35. Clin Mol Allergy. 2020 Oct 06;18:19 [PMID: 33033459]
  36. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  37. Sci Transl Med. 2010 Aug 25;2(46):46ra62 [PMID: 20739682]
  38. Pharmacol Res Perspect. 2019 Mar 13;7(2):e00469 [PMID: 30911397]
  39. Allergy. 2020 Apr;75(4):956-959 [PMID: 31557316]
  40. Lancet Respir Med. 2020 Dec;8(12):1233-1244 [PMID: 33075298]
  41. Int J Dermatol. 2021 Jan;60(1):125-126 [PMID: 33231286]
  42. Leuk Res. 2016 Nov;50:95-103 [PMID: 27710869]
  43. J Eur Acad Dermatol Venereol. 2016 Dec;30(12):2085-2090 [PMID: 27422093]
  44. Bioinformatics. 2020 Dec 26;: [PMID: 33367748]
  45. Clin Exp Allergy. 2018 Nov;48(11):1453-1463 [PMID: 30112775]
  46. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  47. Nat Methods. 2017 Sep;14(9):873-876 [PMID: 28783155]
  48. Allergy. 2014 Apr;69(4):420-37 [PMID: 24697291]

Grants

  1. K24 AR077313/NIAMS NIH HHS
  2. /COVID-19 solidarity funds of the University Zurich
  3. /Christine Kühne Center for Allergy Research and education (CK Care) -Foundation

MeSH Term

CD8-Positive T-Lymphocytes
COVID-19
Exanthema
Humans
Pharmaceutical Preparations
Proteomics
SARS-CoV-2

Chemicals

Pharmaceutical Preparations