A Dall'Asta, T Stampalija, F Mecacci, M Minopoli, G B L Schera, G Cagninelli, C Ottaviani, I Fantasia, M Barbieri, F Lisi, S Simeone, T Ghi, T Frusca
OBJECTIVE: To evaluate the relationship between Doppler and biometric ultrasound parameters measured at diagnosis and perinatal adverse outcome in a cohort of late-onset growth-restricted (FGR) fetuses.
METHODS: This was a multicenter retrospective study of data obtained between 2014 and 2019 including non-anomalous singleton pregnancies complicated by late-onset FGR (≥ 32 weeks), which was defined either as abdominal circumference (AC) or estimated fetal weight (EFW) < 10 percentile for gestational age or as reduction of the longitudinal growth of AC by over 50 percentiles compared to ultrasound scan performed between 18 and 32 weeks of gestation. We evaluated the association between sonographic findings at diagnosis of FGR and composite adverse perinatal outcome (CAPO), defined as stillbirth or at least two of the following: obstetric intervention due to intrapartum fetal distress, neonatal acidemia, birth weight < 3 percentile and transfer to the neonatal intensive care unit (NICU).
RESULTS: Overall, 468 cases with complete biometric and umbilical, fetal middle cerebral and uterine artery (UtA) Doppler data were included, of which 53 (11.3%) had CAPO. On logistic regression analysis, only EFW percentile was associated independently with CAPO (P = 0.01) and NICU admission (P < 0.01), while the mean UtA pulsatility index (PI) multiples of the median (MoM) > 95 percentile at diagnosis was associated independently with obstetric intervention due to intrapartum fetal distress (P = 0.01). The model including baseline pregnancy characteristics and the EFW percentile was associated with an area under the receiver-operating-characteristics curve of 0.889 (95% CI, 0.813-0.966) for CAPO (P < 0.001). A cut-off value for EFW corresponding to the 3.95 percentile was found to discriminate between cases with and those without CAPO, yielding a sensitivity of 58.5% (95% CI, 44.1-71.9%), specificity of 69.6% (95% CI, 65.0-74.0%), positive predictive value of 19.8% (95% CI, 13.8-26.8%) and negative predictive value of 92.9% (95% CI, 89.5-95.5%).
CONCLUSIONS: Retrospective data from a large cohort of late-onset FGR fetuses showed that EFW at diagnosis is the only sonographic parameter associated independently with the occurrence of CAPO, while mean UtA-PI MoM > 95 percentile at diagnosis is associated independently with intrapartum distress leading to obstetric intervention. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Am J Obstet Gynecol. 2018 Feb;218(2S):S790-S802.e1
[PMID:
29422212]
Ultrasound Obstet Gynecol. 2020 Jun;55(6):793-798
[PMID:
31343783]
Ultrasound Obstet Gynecol. 2016 Sep;48(3):333-9
[PMID:
26909664]
Ultrasound Obstet Gynecol. 2000 Mar;15(3):209-12
[PMID:
10846776]
Ultrasound Obstet Gynecol. 2017 Sep;50(3):285-290
[PMID:
28938063]
Ultrasound Obstet Gynecol. 2021 Jan;57(1):62-69
[PMID:
33159370]
Am J Obstet Gynecol. 2012 Oct;207(4):318.e1-6
[PMID:
23021697]
Pediatrics. 2015 Dec;136(6):1087-94
[PMID:
26553185]
Lancet. 2015 May 30;385(9983):2162-72
[PMID:
25747582]
Am J Obstet Gynecol. 1985 Feb 1;151(3):333-7
[PMID:
3881966]
Ultrasound Obstet Gynecol. 2021 Aug;58(2):331-339
[PMID:
34278615]
Ultrasound Obstet Gynecol. 2002 Mar;19(3):225-8
[PMID:
11896941]
J Pediatr. 2015 Aug;167(2):238-45
[PMID:
25957977]
BMJ. 2010 Dec 21;341:c7087
[PMID:
21177352]
Am J Obstet Gynecol. 2018 May;218(5):525.e1-525.e9
[PMID:
29462628]
BMJ. 1989 Mar 4;298(6673):564-7
[PMID:
2495113]
Eur J Obstet Gynecol Reprod Biol. 2020 Sep;252:323-329
[PMID:
32653605]
Ultrasound Obstet Gynecol. 2015 Feb;45(2):162-7
[PMID:
25092251]
Pediatr Neonatol. 2018 Aug;59(4):368-374
[PMID:
29198616]
Lancet. 2007 Oct 20;370(9596):1453-7
[PMID:
18064739]
Ultrasound Obstet Gynecol. 2015 Mar;45(3):279-85
[PMID:
25358519]
Int J Gynaecol Obstet. 2015 Oct;131(1):13-24
[PMID:
26433401]
Am J Obstet Gynecol. 2014 Dec;211(6):669.e1-10
[PMID:
24931475]
Matern Health Neonatol Perinatol. 2017 Jan 18;3:2
[PMID:
28116113]
Ultrasound Obstet Gynecol. 2017 Mar;49(3):364-371
[PMID:
27241184]
Obstet Gynecol. 2006 Nov;108(5):1319-22
[PMID:
17077266]
Ultrasound Obstet Gynecol. 2020 Aug;56(2):285-287
[PMID:
32533800]
BMJ. 1995 Jul 15;311(6998):171-4
[PMID:
7613432]
Obstet Gynecol. 2014 Aug;124(2 Pt 1):274-283
[PMID:
25004344]
Am J Obstet Gynecol. 2018 Feb;218(2S):S783-S789
[PMID:
29422211]
Ultrasound Obstet Gynecol. 2020 Aug;56(2):298-312
[PMID:
32738107]
Aust N Z J Obstet Gynaecol. 2011 Jun;51(3):204-9
[PMID:
21631437]
Ultrasound Obstet Gynecol. 2013 Oct;42(4):400-8
[PMID:
24078432]
Arch Dis Child Fetal Neonatal Ed. 2007 Jan;92(1):F62-7
[PMID:
17185432]
Am J Obstet Gynecol. 2013 Apr;208(4):290.e1-6
[PMID:
23531326]
Am J Obstet Gynecol. 2014 Sep;211(3):288.e1-5
[PMID:
24813969]
Pregnancy Hypertens. 2018 Jul;13:291-310
[PMID:
29803330]
J Matern Fetal Neonatal Med. 2012 Apr;25 Suppl 1:67-9
[PMID:
22348405]
J Paediatr Child Health. 2019 Dec;55(12):1424-1428
[PMID:
30977155]
Ultrasound Obstet Gynecol. 2020 Mar;55(3):368-374
[PMID:
31180600]
J Physiol. 2016 Feb 15;594(4):807-23
[PMID:
26607046]
Am J Obstet Gynecol. 2010 Jul;203(1):42.e1-6
[PMID:
20435282]
Biometrics. 1988 Sep;44(3):837-45
[PMID:
3203132]
Clin Obstet Gynecol. 1993 Mar;36(1):24-32
[PMID:
8435945]
Ultrasound Obstet Gynecol. 2020 Aug;56(2):173-181
[PMID:
32557921]
Ultrasound Obstet Gynecol. 2016 Nov;48(5):636-641
[PMID:
27854384]
Obstet Gynecol. 2018 Apr;131(4):739-740
[PMID:
29578967]
Paediatr Child Health. 2019 Jul;24(4):263-269
[PMID:
31239816]
Child, Preschool
Female
Fetal Distress
Fetal Growth Retardation
Fetal Weight
Gestational Age
Humans
Infant
Infant, Newborn
Infant, Small for Gestational Age
Predictive Value of Tests
Pregnancy
Pregnancy Trimester, Third
Retrospective Studies
Ultrasonography, Prenatal
Umbilical Arteries