Ecotoxicity interspecies study of ionic liquids based on phosphonium and ammonium cations.

Diego Errazquin, Aminou Mohamadou, Laurent Dupont, Yannick De Gaetano, Cristina B García, Laura Lomba, Beatriz Giner
Author Information
  1. Diego Errazquin: Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
  2. Aminou Mohamadou: Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France.
  3. Laurent Dupont: Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France.
  4. Yannick De Gaetano: Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France.
  5. Cristina B García: Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
  6. Laura Lomba: Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
  7. Beatriz Giner: Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain. bginer@usj.es.

Abstract

This work studies the effects of different bromide-based ionic liquids, with phosphonium and ammonium cations, towards several environmental biomodels: Daphnia magna, Allivibrio fischeri, Raphidocelis subcapitata. Results indicate that toxicity clearly depends on the biomodel, Allivibrio fischeri being the least sensitive one while Daphnia magna is more severely affected in the presence of the studied ionic liquids. In most of the cases, phosphonium moieties are less toxic than ammonium ionic liquids. Furthermore, a prediction about the oral toxicity and carcinogenicity of the studied ionic liquids has been also carried out, showing that these chemical structures may suggest significant toxicity but not present genotoxic or nongenotoxic carcinogenicity.

Keywords

References

Anastas P, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, Oxford
Attri P, Pal M (2010) Simple ammonium ionic liquid catalyses the 1,5-benzodiazepine derivatives under mild conditions. Green Chemistry Letters and Reviews 3:249–256 [DOI: 10.1080/17518251003749361]
Berthod A, Ruiz-Angel MJ, Carda-Broch S (2018) Recent advances on ionic liquid uses in separation techniques. J Chromatogr A 1559:2–16 [DOI: 10.1016/j.chroma.2017.09.044]
Bringmann G, Kuhn R (1982) Results of toxic action of water pollutants on daphnia magna straus tested by an improved standardized procedure. Zeitschrift Fur Wasser Und Abwasser Forschung-Journal for Water and Wastewater Research 15:1–6
Cagliero C, Mazzucotelli M, Rubiolo P, Marengo A, Galli S, Anderson JL, Sgorbini B, Bicchi C (2020) Can the selectivity of phosphonium based ionic liquids be exploited as stationary phase for routine gas chromatography? A case study: the use of trihexyl(tetradecyl) phosphonium chloride in the flavor, fragrance and natural product fields. J Chromatogr A:10
Cho C-W, Pham TPT, Jeon Y-C, Vijayaraghavan K, Choe W-S, Yun Y-S (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003–1007 [DOI: 10.1016/j.chemosphere.2007.06.023]
Cho C-W, Jeon Y-C, Pham TPT, Vijayaraghavan K, Yun Y-S (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171 [DOI: 10.1016/j.ecoenv.2007.07.001]
Commission E (2003) European Commission, 2003a. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC), Luxembourg
Cramer GM, Ford RA, Hall RL (1978) Estimation of toxic hazard - decision tree approach. Food Cosmet Toxicol 16:255–276
Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196 [DOI: 10.1007/s11030-012-9413-y]
Deyab MA, Mohsen Q (2021) Understanding the anticorrosion mechanism of phosphonium based ionic liquid for steel in brine water containing H2S and CO2. J Mol Liq 321:6 [DOI: 10.1016/j.molliq.2020.114921]
Diabate PD, Boudesocque S, Dupont L, Mohamadou A (2018a) Syntheses and characterization of the analogues of glycine-betaine based ionic liquids with saccharinate anion: application in the extraction of cadmium ion from aqueous solution. J Mol Liq 272:708–714 [DOI: 10.1016/j.molliq.2018.10.012]
Diabate PD, Dupont L, Boudesocque S, Mohamadou A (2018b) Novel task specific ionic liquids to remove heavy metals from aqueous effluents. Metals 8
Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189 [DOI: 10.1039/b419172b]
Frade RFM, Rosatella AA, Marques CS, Branco LC, Kulkarni PS, Mateus NMM, Afonso CAM, Duarte CMM (2009) Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chem 11:1660–1665 [DOI: 10.1039/b914284n]
Gaida B, Brzeczek-Szafran A (2020) Insights into the properties and potential applications of renewable carbohydrate-based ionic liquids: a review. Molecules 25
Galassi S, Mingazzini M, Vigano L, Cesareo D, Tosato ML (1988) Approaches to modeling toxic responses of aquatic organisms to aromatic-hydrocarbons. Ecotoxicol Environ Saf 16:158–169 [DOI: 10.1016/0147-6513(88)90030-9]
Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids - Part II. Effect of the anion and toxicology. Green Chem 7:9–14 [DOI: 10.1039/b411922c]
Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF (2020) Toxicity and inhibition assessment of ionic liquids by activated sludge. Ecotoxicol Environ Saf 187
Heckenbach ME, Romero FN, Green MD, Halden RU (2016) Meta-analysis of ionic liquid literature and toxicology. Chemosphere 150:266–274 [DOI: 10.1016/j.chemosphere.2016.02.029]
Hsieh SH, Tsai KP, Chen CY (2006) The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Res 40:1957–1964 [DOI: 10.1016/j.watres.2006.03.026]
Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 35:3448–3456 [DOI: 10.1016/S0043-1354(01)00067-7]
Koutinas M, Vasquez MI, Nicolaou E, Pashali P, Kyriakou E, Loizou E, Papadaki A, Koutinas AA, Vyrides L (2019) Biodegradation and toxicity of emerging contaminants: isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation. J Hazard Mater 365:88–96 [DOI: 10.1016/j.jhazmat.2018.10.059]
Lei Z, Dai C, Zhu J, Chen B (2014) Extractive distillation with ionic liquids: a review. AICHE J 60:3312–3329 [DOI: 10.1002/aic.14537]
Lichtenthaler HK (1987): Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, pp. 350-382
Lilius H, Hastbacka T, Isomaa B (1995) A comparison of the toxicity of 30 reference chemicals to daphnia-magna and daphnia-pulex. Environ Toxicol Chem 14:2085–2088
Liu BY, Jin NX (2016) The applications of ionic liquid as functional material: a review. Curr Org Chem 20:2109–2116 [DOI: 10.2174/1385272820666160527101844]
Lomba L, Giner B, Bandres I, Lafuente C, Rosa Pino M (2011) Physicochemical properties of green solvents derived from biomass. Green Chem 13:2062–2070 [DOI: 10.1039/c0gc00853b]
Lomba L, Muniz S, Pino MR, Navarro E, Giner B (2014a) Ecotoxicity studies of the levulinate ester series. Ecotoxicology (London, England) 23:1484–1493 [DOI: 10.1007/s10646-014-1290-y]
Lomba L, Muniz S, Rosa Pino M, Navarro E, Giner B (2014b) Ecotoxicity studies of the levulinate ester series. Ecotoxicology 23:1484–1493 [DOI: 10.1007/s10646-014-1290-y]
Lomba L, Zuriaga E, Giner B (2019) Solvents derived from biomass and their potential as green solvents. Current Opinion in Green and Sustainable Chemistry 18:51–56 [DOI: 10.1016/j.cogsc.2018.12.008]
Lomba L, Lapeña D, Ros N, Aso E, Cannav M, Errazquin D, Giner B (2020) Ecotoxicological study of six drugs in Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata. Environ Sci Pollut Res 27:9891–9900 [DOI: 10.1007/s11356-019-07592-8]
Messadi A, Mohamadou A, Boudesocque S, Dupont L, Fricoteaux P, Nguyen-Van-Nhien A, Courty M (2013) Syntheses and characterisation of hydrophobic ionic liquids containing trialkyl(2-ethoxy-2-oxoethyl)ammonium or N-(1-methylpyrrolidyl-2-ethoxy-2-oxoethyl)ammonium cations. J Mol Liq 184:68–72 [DOI: 10.1016/j.molliq.2013.04.023]
OECD (2004) Test No. 202: Daphnia sp. acute immobilisation test. OECD Publishing, Paris, France
OECD (2011) Test No. 201: freshwater alga and cyanobacteria, growth inhibition test. OECD Publishing, Paris, France
Passino DRM, Smith SB (1987) Acute bioassays and hazard evaluation of representative contaminants detected in great-lakes fish. Environ Toxicol Chem 6:901–907 [DOI: 10.1002/etc.5620061111]
Perales E, Belen Garcia C, Lomba L, Aldea L, Ignacio Garcia J, Giner B (2016) Comparative ecotoxicology study of two neoteric solvents: imidazolium ionic liquid vs. glycerol derivative. Ecotoxicol Environ Saf 132:429–434 [DOI: 10.1016/j.ecoenv.2016.05.021]
Perales E, Garcia CB, Lomba L, Garcia JI, Pires E, Sancho MC, Navarro E, Giner B (2017a) Comparative ecotoxicity study of glycerol-biobased solvents. Environ Chem 14:370–377 [DOI: 10.1071/EN17082]
Perales E, Garcia JI, Pires E, Aldea L, Lomba L, Giner B (2017b) Ecotoxicity and QSAR studies of glycerol ethers in Daphnia magna. Chemosphere 183:277–285 [DOI: 10.1016/j.chemosphere.2017.05.107]
Perales E, Lomba L, Garcia-Escudero M, Sarasa E, Lafuente CE, Giner B (2018) Toxicological study of some ionic liquids. Green Processing and Synthesis 7:287–295 [DOI: 10.1515/gps-2017-0031]
Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403 [DOI: 10.1039/C004968A]
Phillips JN (1955) The energetics of micelle formation. Trans Faraday Soc 51:561–569 [DOI: 10.1039/tf9555100561]
Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol Environ Saf 72:1170–1176 [DOI: 10.1016/j.ecoenv.2008.09.010]
Quental MV, Pereira MM, Ferreira AM, Pedro SN, Shahriari S, Mohamadou A, Coutinho JAP, Freire MG (2018) Enhanced separation performance of aqueous biphasic systems formed by carbohydrates and tetraalkylphosphonium- or tetraalkylammonium-based ionic liquids. Green Chem 20:2978–2983 [DOI: 10.1039/C8GC00622A]
Rao CV, Rout A, Venkatesan KA (2020) Selective separation of zirconium(IV) from uranium(VI) using dioxoamide ligand present in ammonium based ionic liquid: an application towards spent metallic fuel reprocessing. Separation and Purification Technology 247
Skoronski E, Fernandes M, Malaret FJ, Hallett JP (2020) Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Sep Purif Technol 248:8 [DOI: 10.1016/j.seppur.2020.117069]
Toussaint MW, Shedd TR, Vanderschalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ Toxicol Chem 14:907–915 [DOI: 10.1002/etc.5620140524]
UNE-EN-ISO (2007) Water quality - determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). UNE-EN-ISO 11348-3. In: UNE-EN-ISO (Hrsg.), 11348-3
Ventura SPM, Goncalves AMM, Sintra T, Pereira JL, Goncalves F, Coutinho JAP (2013) Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology 22:1–12 [DOI: 10.1007/s10646-012-0997-x]
Wang C, Wei Z, Wang L, Sun P, Wang Z (2015) Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis. Ecotoxicol Environ Saf 115:112–118 [DOI: 10.1016/j.ecoenv.2015.02.012]
Zhao Y, Bostrom T (2015) Application of ionic liquids in solar cells and batteries: a review. Curr Org Chem 19:556–566 [DOI: 10.2174/1385272819666150127002529]
Zuriaga E, Lomba L, Royo FM, Lafuente C, Giner B (2014) Aggregation behaviour of betablocker drugs in aqueous media. New J Chem 38:4141–4148 [DOI: 10.1039/C4NJ00112E]
Zuriaga E, Giner B, Ribate MP, Garcia CB, Lomba L (2018) Exploring the usefulness of key green physicochemical properties: quantitative structure-activity relationship for solvents from biomass. Environ Toxicol Chem 37:1014–1023 [DOI: 10.1002/etc.4058]
Zuriaga E, Lomba L, German B, Lanuza PM, Aldea L, Ribate MP, Garcia CB, Giner B (2019) Ecotoxicity in Aliivibrio fischeri of ibuprofen, omeprazole and their mixtures. Chem Ecol 35:102–114 [DOI: 10.1080/02757540.2018.1540608]

Grants

  1. E31_17R/Goberno de Aragon

MeSH Term

Aliivibrio fischeri
Ammonium Compounds
Animals
Cations
Daphnia
Ionic Liquids
Water Pollutants, Chemical

Chemicals

Ammonium Compounds
Cations
Ionic Liquids
Water Pollutants, Chemical

Word Cloud

Similar Articles

Cited By