Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF.

B Blake Levitt, Henry C Lai, Albert M Manville
Author Information
  1. B Blake Levitt: P.O. Box 2014, New Preston, CT, 06777, USA.
  2. Henry C Lai: Department of Bioengineering, University of Washington, Seattle, WA, USA.
  3. Albert M Manville: Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA.

Abstract

Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.

Keywords

References

  1. Besser, B. Synopsis of the historical development of Schumann resonances. Radio Sci 2007;42:RS2S02. https://doi.org/10.1029/2006rs003495.
  2. Balser, M, Wagner, CA. Measurements of the spectrum of radio noise from 50 to 100 cycles per second 1. J Res Nat Bur Stand D Radio Propag 1960;64D:34–42. https://doi.org/10.6028/jres.064d.050.
  3. NASA. 2021. https://www.nasa.gov/mission_pages/sunearth/news/gallery/schumann-resonance.html .
  4. Friedman, JS. Out of the blue, a history of lightening: science, superstition, and amazing stories of survival. NY: Delecorte Press; 2008:101 p.
  5. Adey, WR. Electromagnetic fields and the essence of living systems. In: Andersen, JB, editor. Modern radio science. New York, NY, USA: Oxford University Press; 1990:1–37 pp.
  6. Becker, RO. Cross currents, the perils of electropollution, the promise of electromedicine. Los Angeles, USA: Jeremy Tarcher; 1990:67–81 pp.
  7. Levitt, BB. Electromagnetic fields: A consumer’s guide to the issues and how to protect ourselves. Orlando, FL, USA: First edition Harcourt Brace and Co.; 1995. iUniverse Authors Guild Backinprint.com edition 2007, Lincoln, NE, USA.
  8. Levitt, BB. Moving beyond public policy paralysis. In: Clements-Croome, D, editor. Electromagnetic environments and health in buildings. New York, NY, USA: Spon Press; 2004:501–18 pp.
  9. Manzella, N, Bracci, M, Ciarapica, V, Staffolani, S, Strafella, E, Rapisarda, V, et al.. Circadian gene expression and extremely low-frequency magnetic fields: an in vitro study. Bioelectromagnetics 2015;36:294–301. https://doi.org/10.1002/bem.21915.
  10. IUCN 2018. The International Union for Conservation of Nature Version 2018-1. Red List of Threatened Species; 2018. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T104651572A104651577.en.
  11. Intergovernmental Science and Policy Platform on Biodiversity and Ecosystem Services, Paris, France (IPBES). In: Brondizio, ES, Settele, J, Díaz, S, Ngo, HT, editors. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat; 2019. https://doi.org/10.5281/zenodo.3553579.
  12. Sanchez-Bayo, F, Wyckhuys, AG. Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 2019;232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020.
  13. Schultz, CB, Brown, LM, Pelton, E, Crone, EE. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol Conserv 2017;214:343–6. https://doi.org/10.1016/j.biocon.2017.08.019.
  14. Xerces Society for Invertebrate Conservation. 2019. Available from: https://xerces.org/monarchs/ .
  15. Center for Biological Diversity. Monarch butterfly population drops by nearly one-third, iconic butterfly has declined by more than 80 percent in recent decades. 2017. Available from: https://www.biologicaldiversity.org/news/press_releases/2017/monarch-butterfly-02-09-2017.php .
  16. Guerra, PA, Gegear, RJ, Reppert, SM. A magnetic compass aids monarch butterfly migration. Nat Commun 2014;5:4164. https://doi.org/10.1038/ncomms5164.
  17. Marha, K, Musil, J, Tuha, H. Electromagnetic fields and the living environment. Praguel, Hungary: State Health Publishing House; 1968. (Trans. SBN 911302-13-7, San Francisco Press, 1971).
  18. Ceballos, G, García, A, Ehrlich, PR. The sixth extinction crisis: loss of animal populations and species. J Cosmol 2010;8:1821–31.
  19. Ceballos, G, Ehrlich, PR, Barnosky, AD, García, A, Pringle, RM, Palmer, TM. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci Adv 2015;1:e1400253. https://doi.org/10.1126/sciadv.1400253.
  20. Ceballos, G, Ehrlich, PR, Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci Unit States Am 2017;114:E6089–96. https://doi.org/10.1073/pnas.1704949114.
  21. Weimerskirch, H, Le Bouard, F, Ryan, PG, Bost, CA. Massive decline of the world’s largest king penguin colony at Ile aux Cochons, Crozet. Anartic Sci 2018;30:236–42. https://doi.org/10.1017/s0954102018000226.
  22. Manville, AMII. Impacts to birds and bats due to collisions and electrocutions from some tall structures in the United States — wires, towers, turbines, and solar arrays: state of the art in addressing the problems. In: Angelici, FM, editor. Problematic wildlife: a cross-disciplinary approach. New York, NY, USA: Springer International Publishers; 2016:415–42 pp. Chap. 20. https://doi.org/10.1007/978-3-319-22246-2_20.
  23. Manville, AMII. Towers, turbines, power lines and solar arrays: the good, the bad and the ugly facing migratory birds and bats — steps to address problems. Invited presentation: Earth Science and Policy Class, GEOL 420. George Mason University; 2016:39 p. PowerPoint slides available online.
  24. Balmori, A. The effects of microwave radiation on wildlife, preliminary results; 2003. Available from: http://www.emrpolicy.org/litigation/case_law/beebe_hill/balmori_wildlife_study.pdf .
  25. Balmori, A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology. Electromagn Fields (EMF) Spec Issue 2009;16:191–9. https://doi.org/10.1016/j.pathophys.2009.01.007.
  26. Balmori, A. Mobile phone mast effects on common frog (Rana temporaria) tadpoles: the city turned into a laboratory. Electromagn Biol Med 2010;29:31–5. https://doi.org/10.3109/15368371003685363.
  27. Balmori, A. Electrosmog and species conservation. Sci Total Environ 2014;496:314–16. https://doi.org/10.1016/j.scitotenv.2014.07.061.
  28. Balmori, A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ 2015;518–519:58–60. https://doi.org/10.1016/j.scitotenv.2015.02.077.
  29. Balmori, A. Radiotelemetry and wildlife: highlighting a gap in the knowledge on radiofrequency radiation effects. Sci Total Environ Part A 2016;543:662–9. https://doi.org/10.1016/j.scitotenv.2015.11.073.
  30. Balmori, A. Electromagnetic radiation as an emerging driver factor for the decline of insects. Sci Total Environ 2021;767:144913. https://doi.org/10.1016/j.scitotenv.2020.144913.
  31. Cucurachi, S, Tamis, WLM, Vijver, MG, Peijnenburg, WLGM, Bolte, JFB, de Snoo, GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int 2013;51:116–40. https://doi.org/10.1016/j.envint.2012.10.009.
  32. Electromagnetic radiation safety; 2016. Available from: https://www.saferemr.com/2016/06/index.html .
  33. Krylov, VV, Izyumov Yu, G, Izekov, EI, Nepomnyashchikh, VA. Magnetic fields and fish behavior. Biol Bull Rev 2014;4:222–31. https://doi.org/10.1134/s2079086414030049.
  34. Panagopoulos, DJ, Margaritis, LH. Mobile telephony radiation effects on living organisms. In: Buress, RV, Harper, AC, editors. Mobile telephones. Hauppauge, NY, USA: Nova Science Publishers; 2008:107–49 pp.
  35. Sivani, S, Sudarsanam, D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem – a review. Biol Med 2013;4:202–16.
  36. Tricas, T, Gill, A. Effects of EMFs from undersea power cables on Elasmobranchs and other marine species. Normandeau Associates, Exponent; U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation, and Enforcement, Pacific OCS Region. Camarillo,CA: OCS Study BOEMRE 2011-09; 2011.
  37. Chung, D, Greshko, M. Industrial farming: a cause of plummeting bird populations. Washington, DC, USA: National Geographic; 2018.
  38. North American Bird Breeding Survey. 2017. Available from: https://www.usgs.gov/centers/pwrc/science/north-american-breeding-bird-survey?qt-science_center_objects=0#qt-science_center_objects .
  39. National Audubon Society. 2021. Available from: https://www.audubon.org/birds/flyways .
  40. Kolbert, E. The sixth extinction, an unnatural history. New York, NY, USA: Henry Holdt & Co; 2014.
  41. Dawson, A. Extinction: a radical history. New York, NY, USA: OR Books; 2016. ISBN 978-1944869014:19 p.
  42. Dirzo, R, Young, HS, Galetti, M, Ceballos, G, Isaac, NJB, Collen, B. Defaunation in the anthropocene. Science 2014;345:401–6. https://doi.org/10.1126/science.1251817.
  43. Edwards, LE. What is the anthropocene? Eos 2015;96:6–7.
  44. Ehlers, E, Moss, C, Krafft, T. Earth system science in the anthropocene: emerging issues and problems. Germany: Springer Verlag Berlin; 2006.
  45. Ellis, E. Anthropocene: a very short introduction. New York, NY, USA: Oxford University Press; 2018.
  46. Waters, CN, Zalasiewicz, J, Summerhayes, C, Barnosky, AD, Poirier, C, Gałuszka, A. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2018;351:aad2622.
  47. Hallmann, CA, Sorg, M, Jongejans, E, Siepel, H, Hofland, N, Schwan, H, et al.. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS One 2017;12:e0185809. https://doi.org/10.1371/journal.pone.0185809.
  48. Lister, BC, Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc Natl Acad Sci Unit States Am 2018;115:E10397–406. https://doi.org/10.1073/pnas.1722477115.
  49. Ark, PA, Parry, W. Application of high-frequency electrostatic fields in agriculture. Q Rev Biol 1940;16:172. https://doi.org/10.1086/394605.
  50. Michaelson, SM, Lin, JC. Biological effects and health implications of radiofrequency radiation. New York, NY, USA: Plenum Press; 1987.
  51. Eder, SHK, Cadiou, H, Muhamad, A, McNaughton, PA, Kirschvink, JL, Winklhofer, M. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc Natl Acad Sci Unit States Am 2012;109:12022–7. https://doi.org/10.1073/pnas.1205653109.
  52. Kobayashi, A, Kirchvink, J. Magnetoreception and electromagnetic field effects: sensory perception of the geomagnetic field in animals and humans. In: Blank, M, editor. Electromagnetic fields, biological interactions and mechanisms. Adv Chem Series. Washington, DC: Oxford University Press; 1995, vol 250:367–94 pp.
  53. Kirschvink, JL, Kuwajima, T, Ueno, S, Kirschvink, SJ, Diaz-Ricci, JC, Morales, A, et al.. Discrimination of low-frequency magnetic fields by honeybees: biophysics and experimental tests. In: Corey, DP, Roper, SD, editors. Sensory Transduction, Society of General Physiologists, 45th Annual Symposium. New York, NY, USA: Rockefeller University Press; 1992:225–40 pp.
  54. Kirschvink, JL, Padmanabha, S, Boyce, CK, Oglesby, J. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Exp Biol 1997;200:1363–8. https://doi.org/10.1242/jeb.200.9.1363.
  55. Heyers, D, Manns, M, Luksch, H, Güntürkün, O, Mouritsen, H. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One 2007;2:e937. https://doi.org/10.1371/journal.pone.0000937.
  56. Moller, A, Sagasser, S, Wiltschko, W, Schierwater, B. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 2004;91:585–8. https://doi.org/10.1007/s00114-004-0578-9.
  57. Collett, TS, Barron, J. Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 1994;386:137–40. https://doi.org/10.1038/368137a0.
  58. QuinnTP, Merrill, RT, Brannon, EL. Magnetic field detection in Sockeye salmon. J Exp Zool 2005;217:137–42.
  59. Balode, Z. Assessment of radio-frequency electromagnetic radiation by the micronucleus test in bovine peripheral erythrocytes. Sci Total Environ 1996;180:81–5. https://doi.org/10.1016/0048-9697(95)04923-1.
  60. Holland, RA, Kirschvink, JL, Doak, TG, Wikelski, M. Bats use magnetoreception to detect the earth’s magnetic field. PloS One 2008;3:e1676. https://doi.org/10.1371/journal.pone.0001676.
  61. Gegear, RJ, Casselman, A, Waddell, S, Reppert, SM. Cryptochrome mediates light-dependent magnetosensitivity to Drosophila. Nature 2008;454:1014–18. https://doi.org/10.1038/nature07183.
  62. Ratner, SC. Kinetic movements in magnetic fields of chitons with ferromagnetic structures. Behav Biol 1976;17:573. https://doi.org/10.1016/s0091-6773(76)91045-2.
  63. Blakemore, R. Magnetotactic bacteria. Science 1975;190:377. https://doi.org/10.1126/science.170679.
  64. Yong, E. Robins can literally see magnetic fields, but only if their visions is sharp. New York, NY, USA: DiscoverMagazine.com; 2010. Available from: http://blogs.discovermagazine.com/notrocketscience/2010/07/08/robins-can-literally-see-magnetic-fields-but-only-if-their-vision-is-sharp/#.WlU2d3lG3Z4.
  65. Morley, EL, Robert, D. Electric fields elicit ballooning in spiders. Curr Biol 2018;28:2324–30. https://doi.org/10.1016/j.cub.2018.05.057.
  66. Vidal-Gadea, A, Ward, K, Beron, C, Ghorashian, N, Gokce, S, Russell, J, et al.. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife 2015;4:e07493. https://doi.org/10.7554/eLife.07493.
  67. Van Huizen, AV, Morton, JM, Kinsey, LJ, Von Kannon, DG, Saad, MA, Birkholz, TR, et al.. Weak magnetic fields alter stem cell–mediated growth. Sci Adv 2019;5:eaau7201. https://doi.org/10.1126/sciadv.aau7201.
  68. Begall, S, Cerveny, J, Neef, J, Vojtech, O, Burda, H. Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci Unit States Am 2008;105:13451–5. https://doi.org/10.1073/pnas.0803650105.
  69. Burda, H, Begall, S, Cervený, J, Neef, J, Nemec, P. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci Unit States Am 2009;106:5708–13. https://doi.org/10.1073/pnas.0811194106.
  70. Slaby, P, Tomanova, K, Vacha, M. Cattle on pastures do align along the North-South axis, but the alignment depends on herd density. J Comp Physiol 2013;199:695–701. https://doi.org/10.1007/s00359-013-0827-5.
  71. Fedrowitz, MC. A big model for EMF research, somewhere between Vet-Journals and “Nature.” Bioelectromagnetics Society; 2014. https://www.bems.org/node/14835.
  72. Cerveny, J, Begall, S, Koubek, P, Novakova, P, Burda, H. Directional preference max enhance hunting accuracy in foraging foxes. Biol Lett 2011;7:355–7. https://doi.org/10.1098/rsbl.2010.1145.
  73. Hart, V, Nováková, P, Malkemper, EP, Begall, S, Hanzal, V, Ježek, M, et al.. Dogs are sensitive to small variations of the Earth’s magnetic field. Front Zool 2013;10:80. https://doi.org/10.1186/1742-9994-10-80.
  74. Nießner, C, Denzau, S, Malkemper, EP, Gross, JC, Burda, H, Winklhofer, M, et al.. Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Sci Rep 2016;6:21848. https://doi.org/10.1038/srep21848.
  75. Chulliat, A, Macmillan, S, Alken, P, Beggan, C, Nair, M, Hamilton, B, et al.. The US/UK world magnetic model for 2015-2020 Technical Report. Boulder, CO: NOAA National Geophysical Data Center; 2015. https://doi.org/10.7289/V5TB14V7.
  76. Nelson, B. Magnetic north shifting by 30 miles a year, might signal pole reversal. Ocala, FL, USA: MNN.com Earth Matters; 2019. Available from: https://www.mnn.com/earth-matters/climate-weather/stories/magnetic-north-shifting-by-40-miles-a-year-might-signal-pole-r.
  77. Lai, H. Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn Biol Med 2019;38:231–48. https://doi.org/10.1080/15368378.2019.1656645.
  78. Manger, PR, Pettigrew, JD. Ultrastructure, number, distribution and innervation of electroreceptors and mechanoreceptors in the bill skin of the platypus, Ornithorhynchus anatinus. Brain Behav Evol 1996;48:27–54. https://doi.org/10.1159/000113185.
  79. Montgomery, JC, Bodznick, D. Signals and noise in the elasmobranch electrosensory system. J Exp Biol 1999;202:1349–55. https://doi.org/10.1242/jeb.202.10.1349.
  80. von der Emde, G. Active electrolocation of objects in weakly electric fish. Exp Biol 1999;202:1205–15. https://doi.org/10.1242/jeb.202.10.1205.
  81. Gaston, KJ, Duffy, JP, Gaston, S, Bennie, J, Davies, TW. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 2014;176:917–31. https://doi.org/10.1007/s00442-014-3088-2.
  82. Gaston, KJ, Visser, ME, Holker, F. The biological impacts of artificial light at night: the research challenge. Phil Trans R Soc 2015;B370:20140133. https://doi.org/10.1098/rstb.2014.0133.
  83. Harder, B. Deprived of darkness, the unnatural ecology of artificial light at night. Sci News 2002;161:248–9. https://doi.org/10.2307/4013350.
  84. Holker, F, Wolter, C, Perkin, EK, Tockner, K. Light pollution as a biodiversity threat. Trends Ecol Evol 2010;25:681–2. https://doi.org/10.1016/j.tree.2010.09.007.
  85. Myers, K. The negative effects of artificial light on wildlife. Wales, UK: Inside Ecology; 2018. Available from: https://insideecology.com/2018/11/19/the-negative-effects-of-artificial-light-on-wildlife/.
  86. Davies, TW, Bennie, J, Inger, R, Hempel de Ibarra, N, Gaston, KJ. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Global Change Biol 2013;19:1417–23. https://doi.org/10.1111/gcb.12166.
  87. Luginbuhl, CB, Boley, PA, Davis, DR. The impact of light source spectral power distribution on skyglow. J Quant Spectrosc Radiat Transf 2014;139:21–6. https://doi.org/10.1016/j.jqsrt.2013.12.004.
  88. Evans, WR, Akashi, Y, Altman, NS, Manville, AMII. Response of night-migrating songbirds in cloud to colored and flashing light. North Am Birds 2007;60:476–88.
  89. Brothers, JR, Lohmann, KJ. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr Biol 2015;25:392–6. https://doi.org/10.1016/j.cub.2014.12.035.
  90. Naisbett-Jones, LC, Putman, NF, Stephenson, JF, Ladak, S, Young, KA. A magnetic map leads juvenile European eels to the gulf stream. Curr Biol 2017;27:1236–40. https://doi.org/10.1016/j.cub.2017.03.015.
  91. Putman, NF, Jenkins, ES, Michielsens, CG, Noakes, DL. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon. J R Soc Interface 2014;11:20140542. https://doi.org/10.1098/rsif.2014.0542.
  92. Landler, L, Painter, MS, Youmans, PW, Hopkins, WA, Phillips, JB. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PloS One 2015;10:e0124728. https://doi.org/10.1371/journal.pone.0124728.
  93. Hillman, D, Stetzer, D, Graham, M, Goeke, CL, Mathson, KE, Van Horn, HH, et al.. Relationship of electric power quality to milk production of dairy herds. Presentation paper no.033116. Las Vegas, NV, USA: American Society of Agricultural Engineers International Meeting; 2003.
  94. Hillman, D, Goeke, C, Moser, R. Electric and magnetic fields (EMFs) affect milk production and behavior of cows: results using shielded-neutral isolation transformer. In: 12th International Conference on Production Diseases in Farm Animals. East Lansing, MI 48824: Michigan State Univ., College of Veterinary Medicine; 2004.
  95. Hässig, M, Jud, F, Naegeli, H, Kupper, J, Spiess, BM. Prevalence of nuclear cataract in Swiss veal calves and its possible association with mobile telephone antenna base stations. Schweiz Arch Tierheilkd 2009;151:471–8. http://www.ncbi.nlm.nih.gov/pubmed/19780007.
  96. Hässig, M, Jud, F, Spiess, B. Increased occurence of nuclear cataract in the calf after erection of a mobile phone base station. Schweiz Arch Tierheilkd 2012;154:82–6. (Article in German). https://doi.org/10.1024/0036-7281/a000300.
  97. Hässig, M, Wullschleger, M, Naegeli, H, Kupper, J, Spiess, B, Kuster, N, et al.. Influence of non ionizing radiation of base stations on the activity of redox proteins in bovines. BMC Vet Res 2014;10:136. https://doi.org/10.1186/1746-6148-10-136.
  98. Hydro. Re-evaluating Wireless Capabilities. Technology in focus: underwater electromagnetic propagation; 2008. Available from: https://www.hydro-international.com/content/article/underwater-electromagnetic-propagation .
  99. Zipse, DW. Death by grounding. PCIC technical conference.; 2008. Sept. 22, 2008, IAS/PCIC 08-03 https://doi.org/10.1109/PCICON.2008.4663964 .
  100. Chu, J. Artificial whisker reveals source of harbor seal’s uncanny prey-sensing ability, study finds a whisker’s “slaloming” motion helps seals track and chase prey. MIT News Office; 2015.
  101. Kalmijn, AJ. Electric and magnetic field detection in elasmobranch fishes. Science 1982;218:916. https://doi.org/10.1126/science.7134985.
  102. Lin, JC. Electromagnetic interaction with biological systems. New York, NY, USA: Plenum Press; 1989.
  103. Tenforde, TS. Electroreception and magnetoreception in simple and complex organisms. Bioelectromagnetics 1989;10:215–21. https://doi.org/10.1002/bem.2250100302.
  104. Johnsen, S, Lohmann, KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci 2005;6:703–12. https://doi.org/10.1038/nrn1745.
  105. Johnsen, S, Lohmann, KJ. Magnetoreception in animals. Phys Today 2008;61:29–35. https://doi.org/10.1063/1.2897947.
  106. Mouritsen, H, Ritz, T. Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 2005;15:406–14. https://doi.org/10.1016/j.conb.2005.06.003.
  107. Ritz, T, Adem, S, Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys J 2000;78:707–18. https://doi.org/10.1016/s0006-3495(00)76629-x.
  108. Ritz, T, Dommer, DH, Phillips, JB. Shedding light on vertebrate magnetoreception. Neuron 2002;34:503–6. https://doi.org/10.1016/s0896-6273(02)00707-9.
  109. Ritz, T, Thalau, P, Phillips, JB, Wiltschko, R, Wiltschko, W. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 2004;429:177–80. https://doi.org/10.1038/nature02534.
  110. Ritz, T, Wiltschko, R, Hore, PJ, Rodgers, CT, Stapput, K, Thalau, P, et al.. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 2009;96:3451–7. https://doi.org/10.1016/j.bpj.2008.11.072.
  111. Ritz, T, Ahmad, M, Mouritsen, H, Wiltschko, R, Wiltschko, W. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 2010;7:S135–46. https://doi.org/10.1098/rsif.2009.0456.focus.
  112. Frankel, RB, Blakemore, RP, Wolf, RS. Magnetite in freshwater magnetotactic bacteria. Science 1979;203:1355. https://doi.org/10.1126/science.203.4387.1355.
  113. Blakemore, RP, Frankel, RB, Kalmijn, A. South-seeking magnetotactic bacteria in the southern hemisphere. Science 1980;212:1269.
  114. Frankel, RB, Blakemore, RP, Torres de Araujo, FF, Esquival, DMS. Magnetotactic bacteria at the geomagnetic equator. Science 1981;212:1269. https://doi.org/10.1126/science.212.4500.1269.
  115. Presti, D, Pettigrew, JD. Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 1980;285:99–101. https://doi.org/10.1038/285099a0.
  116. Walcott, C, Green, RP. Orientation of homing pigeons altered by a change in direction of an applied magnetic field. Science 1974;184:180–2. https://doi.org/10.1126/science.184.4133.180.
  117. Kirchsvink, JL, Lowenstam, HA. Mineralization and magnetization of chiton teeth: paleomagnetic, sedimentologic and biologic implications of organic magnetite. Earth Planet Sci Lett 1979;44:193–204.
  118. Lowenstam, HA. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol Soc Am Bull 1962;73:435. https://doi.org/10.1130/0016-7606(1962)73[435:midcir]2.0.co;2.
  119. Gould, JL, Kirschvink, JL, Deffeyes, KS. Bees have magnetic remanence. Science 1978;202:1026–8. https://doi.org/10.1126/science.201.4360.1026.
  120. Hore, PJ, Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu Rev Biophys 2016;45:299–344. https://doi.org/10.1146/annurev-biophys-032116-094545.
  121. Hiscock, HG, Mouritsen, H, Manolopoulos, DE, Hore, PJ. Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophys J 2017;113:1475–84. https://doi.org/10.1016/j.bpj.2017.07.031.
  122. Pakhomov, A, Bojarinova, J, Cherbunin, R, Chetverikova, R, Grigoryev, PS, Kavokin, K, et al.. Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J R Soc Interface 2017;14:20170364. https://doi.org/10.1098/rsif.2017.0364.
  123. Ahmad, M, Galland, P, Ritz, T, Wiltschko, R, Wiltschko, W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 2007;225:615–24. https://doi.org/10.1007/s00425-006-0383-0.
  124. Blank, M. Overpowered, what science tells us about the dangers of cell phones and other wifi-age devices. New York, NY, USA: Seven Stories Press; 2014:28–9 pp.
  125. Wiltschko, R, Wiltschko, W. Magnetoreception. Bioessays 2006;28:157–68. https://doi.org/10.1002/bies.20363.
  126. Wiltschko, R, Thalau, P, Gehring, D, Nießner, C, Ritz, T, Wiltschko, W. Magnetoreception in birds: the effect of radio-frequency fields. J R Soc Interface 2015;12:20141103. https://doi.org/10.1098/rsif.2014.1103.
  127. Phillips, JB, Sayeed, O. Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J Comp Physiol 1993;172:303–8. https://doi.org/10.1007/bf00216612.
  128. Wiltschko, W, Munro, U, Beason, RC, Ford, H, Wiltschko, R. A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 1994;50:697–700. https://doi.org/10.1007/bf01952877.
  129. Wiltschko, W, Wiltschko, R. Magnetoreception in birds: two receptors for two different tasks. J Ornithol 2007;148:S61–76. https://doi.org/10.1007/s10336-007-0233-2.
  130. Wiltschko, R, Wiltschko, W. Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 2014;4:221–43. https://doi.org/10.3390/bios4030221.
  131. Wiltschko, R, Wiltschko, W. Magnetoreception in birds. J R Soc Interface 2019;16:20190295. https://doi.org/10.1098/rsif.2019.0295.
  132. Wiltschko, W, Freire, R, Munro, U, Ritz, T, Rogers, L, Thalau, P, et al.. The magnetic compass of domestic chickens, Gallus gallus. J Exp Biol 2007;210:2300–10. https://doi.org/10.1242/jeb.004853.
  133. Wiltschko, R, Stapput, K, Thalau, P, Wiltschko, W. Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 2010;7:S163–77. https://doi.org/10.1098/rsif.2009.0367.focus.
  134. Malkemper, EP, Eder, SH, Begall, S, Phillips, JB, Winklhofer, M, Hart, V, et al.. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci Rep 2015;4:9917. https://doi.org/10.1038/srep09917.
  135. Malewski, S, Begall, S, Schleich, CE, Antenucci, CD, Burda, H. Do subterranean mammals use the earth’s magnetic field as a heading indicator to dig straight tunnels? Peer J 2018;6:e5819. https://doi.org/10.7717/peerj.5819.
  136. Wang, CX, Hilburn, IA, Wu, DA, MizuharaY, Cousté, CP, Abrahams, JNH, et al.. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eNeuro 2019;6:0483–18. https://doi.org/10.1523/eneuro.0483-18.2019.
  137. McCarty, DE, Carrubba, S, Chesson, AL, Frilot, C, Gonzalez-Toledo, E, Marino, AA. Electromagnetic hypersensitivity: evidence for a novel neurological syndrome. Int J Neurosci 2011;21:670–6. https://doi.org/10.3109/00207454.2011.608139.
  138. Johnsen, S, Lohmann, KJ, Warrant, EJ. Animal navigation: a noisy magnetic sense? J Exp Biol 2020;223:jeb164921. https://doi.org/10.1242/jeb.164921.
  139. Phillips, JL, Singh, NP, Lai, HC. Electromagnetic fields and DNA damage. Pathophysiology 2009;16:79–88. https://doi.org/10.1016/j.pathophys.2008.11.005.
  140. Lai, H, Singh, NP. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 1995;16:207–10. https://doi.org/10.1002/bem.2250160309.
  141. Lai, H, Singh, NP. Single and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 1996;69:513–21. https://doi.org/10.1080/095530096145814.
  142. Lai, H, Singh, NP. Melatonin and N-tert-butyl-α-phenylnitrone blocked 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res 1997;22:152–62. https://doi.org/10.1111/j.1600-079x.1997.tb00317.x.
  143. Lai, H, Singh, NP. Acute exposure to a 60-Hz magnetic field increases DNA single strand breaks in rat brain cells. Bioelectromagnetics 1997;18:156–65. https://doi.org/10.1002/(sici)1521-186x(1997)18:2<156::aid-bem8>3.0.co;2-1.
  144. Lai, H, Singh, NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 2004;112:687–49. https://doi.org/10.1289/ehp.6355.
  145. Ahuja, YR, Vijayashree, B, Saran, R, Jayashri, EL, Manoranjani, JK, Bhargava, SC. In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys 1999;36:318–22.
  146. Delimaris, J, Tsilimigaki, S, Messini-Nicolaki, N, Ziros, E, Piperakis, SM. Effects of pulsed electric fields on DNA of human lymphocytes. Cell Biol Toxicol 2006;22:409–15. https://doi.org/10.1007/s10565-006-0105-1.
  147. Hong, R, Zhang, Y, Liu, Y, Weng, EQ. Effects of extremely low frequency electromagnetic fields on DNA of testicular cells and sperm chromatin structure in mice. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2005;23:414–17. [Article in Chinese].
  148. Ivancsits, S, Diem, E, Pilger, A, Rudiger, HW, Jahn, O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res 2002;519:1–13. https://doi.org/10.1016/s1383-5718(02)00109-2.
  149. Ivancsits, S, Diem, E, Jahn, O, Rudiger, HW. Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev 2003;124:847–50. https://doi.org/10.1016/s0047-6374(03)00125-8.
  150. Ivancsits, S, Pilger, A, Diem, E, Jahn, O, Rudiger, HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res 2005;583:184–8. https://doi.org/10.1016/j.mrgentox.2005.03.011.
  151. Jajte, J, Zmyslony, M, Palus, J, Dziubaltowska, E, Rajkowska, E. Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat Res 2001;483:57–64. https://doi.org/10.1016/s0027-5107(01)00230-5.
  152. Lourencini da Silva, R, Albano, F, Lopes dos Santos, LR, Tavares, ADJr, Felzenszwalb, I. The effect of electromagnetic field exposure on the formation of DNA lesions. Redox Rep 2000;5:299–301. https://doi.org/10.1179/135100000101535843.
  153. Schmitz, C, Keller, E, Freuding, T, Silny, J, Korr, H. 50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice. Acta Neuropathol 2004;107:257–64. https://doi.org/10.1007/s00401-003-0799-6.
  154. Svedenstal, BM, Johanson, KJ, Mild, KH. DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo 1999;13:551–2.
  155. Winker, R, Ivancsits, S, Pilger, A, Adlkofer, F, Rudiger, HW. Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res 2005;585:43–9. https://doi.org/10.1016/j.mrgentox.2005.04.013.
  156. Wolf, FI, Torsello, A, Tedesco, B, Fasanella, S, Boninsegna, A, D’Ascenzo, M, et al.. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 2005;743:120–9. https://doi.org/10.1016/j.bbamcr.2004.09.005.
  157. Yokus, B, Cakir, DU, Akdag, MZ, Sert, C, Mete, N. Oxidative DNA damage in rats exposed to extremely low frequency electromagnetic fields. Free Radic Res 2005;39:317–23. https://doi.org/10.1080/10715760500043603.
  158. Zmyslony, M, Palus, J, Jajte, J, Dziubaltowska, E, Rajkowska, E. DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutat Res 2000;453:89–96. https://doi.org/10.1016/s0027-5107(00)00094-4.
  159. Chow, K, Tung, WL. Magnetic field exposure enhances DNA repair through the induction of DnaK/J synthesis. FEBS Lett 2000;478:133–6. https://doi.org/10.1016/s0014-5793(00)01822-6.
  160. Robison, JG, Pendleton, AR, Monson, KO, Murray, BK, O’Neill, KL. Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics 2002;23:106–12. https://doi.org/10.1002/bem.103.
  161. Sarimov, R, Alipov, ED, Belyaev, IY. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics 2011;32:570–9. https://doi.org/10.1002/bem.20674.
  162. Yakymenko, I, Tsybulin, O, Sidorik, E, Henshel, D, Kyrylenko, O, Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2016;35:186–202. https://doi.org/10.3109/15368378.2015.1043557.
  163. Sarkar, S, Ali, S, Behari, J. Effect of low power microwave on the mouse genome: a direct DNA analysis. Mutat Res 1994;320:141–7. https://doi.org/10.1016/0165-1218(94)90066-3.
  164. Phillips, JL, Ivaschuk, O, Ishida-Jones, T, Jones, RA, Campbell-Beachler, M, Haggren, W. DNA damage in Molt-4 T- lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg 1998;45:103–10. https://doi.org/10.1016/s0302-4598(98)00074-9.
  165. Lai, H. Genetic effects of nonionizing electromagnetic fields. Electromagn Biol Med 2021. (online 2/4/2021). https://doi.org/10.1080/15368378.2021.1881866.
  166. Diem, E, Schwarz, C, Adlkofer, F, Jahn, O, Rudiger, H. Non-thermal DNA breakage by mobile-phone radiation (1800-MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res 2005;583:178–83. https://doi.org/10.1016/j.mrgentox.2005.03.006.
  167. Levitt, BB, Lai, H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev 2010;18:369–95. https://doi.org/10.1139/a10-018.
  168. Bagheri Hosseinabadi, M, Khanjani, N, Mirzaii, M, Norouzi, P, Atashi, A. DNA damage from long-term occupational exposure to extremely low frequency electromagnetic fields among power plant workers. Mutat Res 2019;846:403079. https://doi.org/10.1016/j.mrgentox.2019.07.007.
  169. Gandhi, G, Kaur, G, Nisar, U. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station. Electromagn Biol Med 2015;34:344–54. https://doi.org/10.3109/15368378.2014.933349.
  170. Zendehdel, R, Yu, IJ, Hajipour-Verdom, B, Panjali, Z. DNA effects of low level occupational exposure to extremely low frequency electromagnetic fields (50/60 Hz). Toxicol Ind Health 2019;35:424–30. https://doi.org/10.1177/0748233719851697.
  171. Zothansiama, Zosangzuali, M, Lalramdinpuii, M, Jagetia, GC. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med 2017;36:295–305. https://doi.org/10.1080/15368378.2017.1350584.
  172. Marino, A. Assessing health risks of cell towers. In: Levitt, BB, editor. Cell towers, wireless convenience or environmental hazards? Proceedings of the “Cell Towers Forum” state of the science/state of the law. Bloomington: iUniverse, Inc.; 2011:87-103 pp.
  173. BioInitiative Working Group. BioInitiative report: a rationale for a biologically-based public exposure standard for electromagnetic fields (ELF and RF). Report updated: 2014-2020. Sage, C., Carpenter, D.O (eds.); 2012. Available from: www.bioinitiative.org .
  174. Blank, M, Goodman, R. DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol 2011;87:409–15. https://doi.org/10.3109/09553002.2011.538130.
  175. Werner, DH, Ganguly, S. An overview of fractal antenna engineering research. IEEE Antenn Propag Mag 2003;45:38–57.
  176. Adey, WR, Sheppard, AR. Cell surface ionic phenomena in transmembrane signaling to intracellular enzyme systems. In: Blank, M, Findl, E, editors. Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. New York NY, USA: Plenum Press; 1987:365–87 pp. https://doi.org/10.1007/978-1-4899-1968-7_22.
  177. Adey, WR. The sequence and energetics of cell membrane transductive coupling to intracellular enzyme systems. Bioelectrochem Bioenerg 1986;15:447–56. https://doi.org/10.1016/0302-4598(86)85033-4.
  178. Adey, WR. Evidence of cooperative mechanisms in the susceptibility of cerebral tissue to environmental and intrinsic electric fields. In: Schmitt, FO, Schneider, DM, Crothers, DM, editors. Functional linkage in biomolecular systems. New York, NY, USA: Raven Press; 1975:325–42 pp.
  179. Adey, WR. Models of membranes of cerebral cells as substrates for information storage. Biosystems 1977;8:163–78. https://doi.org/10.1016/0303-2647(77)90035-1.
  180. Adey, WR. Tissue interactions with nonionizing electromagnetic fields. Physiol Rev 1981;61:435–514. https://doi.org/10.1152/physrev.1981.61.2.435.
  181. Adey, WR. Ionic nonequilibrium phenomena in tissue interactions with electromagnetic fields. In: Illinger, KH, editor. Biological effects of nonionizing radiation. Washington, D.C., USA: American Chemical Soc; 1981:271–97 pp.
  182. Adey, WR. Molecular aspects of cell membranes as substrates for interactions with electromagnetic fields. In: Basar, E, Flohr, H, Haken, H, Mandell, AJ, editors. Synergistics of the brain. New York, NY, USA: Springer International Publisher; 1983:201–11 pp. https://doi.org/10.1007/978-3-642-69421-9_16.
  183. Adey, WR. Nonlinear, nonequlibrium aspects of electromagnetic field interactions at cell membranes. In: Adey, WR, editor. Nonlinear electrodynamics in biological systems. Lawrence AF. New York, NY, USA: Plenum Press, 1984:3–22 pp.
  184. Lawrence, AF, Adey, WR. Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurol Res 1982;4:115–53. https://doi.org/10.1080/01616412.1982.11739619.
  185. Maddox, J. Physicists about to hijack DNA? Nature 1986;324:11. https://doi.org/10.1038/324011a0.
  186. Goodman, R, Bassett, CA, Henderson, AS. Pulsing electromagnetic fields induce cellular transcription. Science 1983;220:1283–5. https://doi.org/10.1126/science.6857248.
  187. Pall, ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 2013;17:958–65. https://doi.org/10.1111/jcmm.12088.
  188. Blackman, CF. Is caution warranted in cell tower siting? Linking science and public health. In: Levitt, BB, editor. Cell Towers, Wireless Convenience? Or Environmental Hazard? Proceedings of the Cell Towers Forum, State of the Science, State of the Law. Bloominton, IN: iUniverse edition; 2011:50–64 pp.
  189. Pall, ML. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health 2015;30:99–116. https://doi.org/10.1515/reveh-2015-0001.
  190. Bawin, SM, Kaczmarek, LK, Adey, WR. Effects of modulated VHF fields on the central nervous system. Ann NY Acad Sci 1975;247:74–81. https://doi.org/10.1111/j.1749-6632.1975.tb35984.x.
  191. Bawin, SM, Adey, WR. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci Unit States Am 1976;73:1999–2003. https://doi.org/10.1073/pnas.73.6.1999.
  192. Blackman, CF, Benane, SG, Elder, JA, House, DE, Lampe, JA, Faulk, JM. Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: effect of sample number and modulation frequency on the power-density window. Bioelectromagnetics 1980;1:35–43. https://doi.org/10.1002/bem.2250010104.
  193. Blackman, CF, Benane, SG, Joines, WT, Hollis, MA, House, DE. Calcium-ion efflux from brain tissue: power-density versus internal field-intensity dependencies at 50-MHz RF radiation. Bioelectromagnetics 1980;1:277–83. https://doi.org/10.1002/bem.2250010304.
  194. Blackman, CF, Benane, SG, Kinney, LS, Joines, WT, House, DE. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat Res 1982;92:510–20. https://doi.org/10.2307/3575923.
  195. Blackman, CF, Kinney, LS, House, DE, Joines, WT. Multiple power density windows and their possible origin. Bioelectromagnetics 1989;10:115–28. https://doi.org/10.1002/bem.2250100202.
  196. Adey, WR, Bawin, SM, Lawrence, AF. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex. Bioclectromagnetics 1982;3:295–307. https://doi.org/10.1002/bem.2250030302.
  197. Blackman, CF, Benane, SG, Rabinowitz, JR, House, DE, Joines, WTA. Role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985;6:327–37. https://doi.org/10.1002/bem.2250060402.
  198. Liboff, AR, Williams, JT, Strong, DM, Wistar, JR. Time-varying magnetic fields: effect on DNA synthesis. Science 1984;223:818–20. https://doi.org/10.1126/science.6695183.
  199. Liboff, AR. Geomagnetic cyclotron resonance in living cells. J Biol Phys 1985;13:99–102. https://doi.org/10.1007/bf01878387.
  200. Yakymenko, I, Burlaka, A, Tsybulin, O, Brieieva, O, Buchynska, L, Tsehmistrenko, S, et al.. Oxidative and mutagenic effects of low intensity GSM 1800 MHz microwave radiation. Exp Oncol 2018;40:282–7. https://doi.org/10.31768/2312-8852.2018.40(4):282-287.
  201. Blank, M, Goodman, R. Electromagnetic fields stress living cells. Pathophysiology 2009;16:71–8. https://doi.org/10.1016/j.pathophys.2009.01.006.
  202. Goodman, R, Blank, M. Biosynthetic stress response in cells exposed to electromagnetc fields. In: Blank, M, editor. Electromagnetic fields, biological interactions and mechanims, Advances in Chemistry Series 250. Washington, DC: American Chemical Society; 1995:425–36 pp.
  203. Goodman, R, Blank, M. Magnetic field induces expression of hsp70. Cell Stress Chaperones 1998;3:79–88. https://doi.org/10.1379/1466-1268(1998)003<0079:mfsieo>2.3.co;2.
  204. Pai, VP, Lemire, JM, Paré, JF, Lin, G, Chen, Y, Levin, M. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via notch signaling and regulation of proliferation. J Neurosci 2015;35:4366–85. https://doi.org/10.1523/jneurosci.1877-14.2015.
  205. Lai, H. Neurological effects of radiofrequency electromagnetic radiation, presented at the "workshop on possible biological and health effects of RF electromagnetic fields". In: Mobile phone and health symposium. Vienna, Austria: University of Vienna; 1998. Available from: https://mapcruzin.com/radiofrequency/henry_lai2.htm.
  206. Nicholls, B, Racey, PA. Bats avoid radar installations: could electromagnetic fields deter bats from colliding with wind turbines? PloS One 2007;2:e297. https://doi.org/10.1371/journal.pone.0000297.
  207. Nicholls, B, Racey, PA. The aversive effect of electromagnetic radiation on foraging bats: a possible means of discouraging bats from approaching wind turbines. PloS One 2009;4:e6246. https://doi.org/10.1371/journal.pone.0006246.
  208. Vácha, M, Puzová, T, Kvícalová, M. Radiofrequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 2009;212:3473–7.
  209. Shepherd, S, Lima, MAP, Oliveira, EE, Sharkh, SM, Jackson, CW, Newland, PL. Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees. Sci Rep 2018;8:7932. https://doi.org/10.1038/s41598-018-26185-y.
  210. Hart, V, Kušta, T, Němec, P, Bláhová, V, Ježek, M, Nováková, P, et al.. Magnetic alignment in carps: evidence from the Czech Christmas fish market. PloS One 2012;7:e51100. https://doi.org/10.1371/journal.pone.0051100.
  211. Hart, V, Malkemper, EP, Kušta, T, Begall, S, Nováková, P, Hanzal, V, et al.. Directional compass preference for landing in water birds. Front Zool 2013;10:38. https://doi.org/10.1186/1742-9994-10-38.
  212. Putman, NF, Meinke, AM, Noakes, DL. Rearing in a distorted magnetic field disrupts the ’map sense’ of juvenile steelhead trout. Biol Lett 2014;10:20140169. https://doi.org/10.1098/rsbl.2014.0169.
  213. Engels, S, Schneider, NL, Lefeldt, N, Hein, CM, Zapka, M, Michalik, A, et al.. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 2014;509:353–6. https://doi.org/10.1038/nature13290.
  214. Schwarze, S, Schneibder, NL, Reichl, T, Dreyer, D, Lefeldt, N, Engels, S, et al.. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front Behav Neurosci 2016;10:55. https://doi.org/10.3389/fnbeh.2016.00055.
  215. La Vignera, S, Condorelli, RA, Vicari, E, D’Agata, R, Calogero, AE. Effects of the exposure to mobile phones on male reproduction: a review of the literature. J Androl 2012;33:350–6. https://doi.org/10.2164/jandrol.111.014373.
  216. Merhi, ZO. Challenging cell phone impact on reproduction: a review. J Assist Reprod Genet 2012;29:293–7. https://doi.org/10.1007/s10815-012-9722-1.
  217. Magras, IN, Xenos, TD. RF-induced changes in the prenatal development of mice. Bioelectromagnetics 1997;18:455–61. https://doi.org/10.1002/(sici)1521-186x(1997)18:6<455::aid-bem8>3.0.co;2-1.
  218. Aldad, TS, Gan, G, Gao, XB, Taylor, HS. Fetal radiofrequency radiation exposure from 800-1900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep 2012;2:312. https://doi.org/10.1038/srep00312.
  219. Meral, I, Mert, H, Mert, N, Deger, Y, Yoruk, I, Yetkin, A, et al.. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of Guinea pigs. Brain Res 2007;1169:120–4. https://doi.org/10.1016/j.brainres.2007.07.015.
  220. Lai, H, Horita, A, Guy, AW. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 1994;15:95–104. https://doi.org/10.1002/bem.2250150202.
  221. Cassel, JC, Cosquer, B, Galani, R, Kuster, N. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 2004;155:37–43. https://doi.org/10.1016/j.bbr.2004.03.031.
  222. Cobb, BL, Jauchem, J, Adair, ER. Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics 2004;25:49–57. https://doi.org/10.1002/bem.10148.
  223. Cosquer, B, Galani, R, Kuster, N, Cassel, JC. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter anxiety responses in rats: a plus-maze study including test validation. Behav Brain Res 2005;156:65–74. https://doi.org/10.1016/j.bbr.2004.05.007.
  224. Lai, H. A summary of recent literature (2007-2017) on neurobiological effects of radiofrequency radiation. In: Markov, M, editor. Mobile communications and public health. Boca Raton, FL, USA: CRC Press; 2018, Chapter 8:187–222 pp.
  225. Daniels, WM, Pitout, IL, Afullo, TJ, Mabandla, MV. The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis 2009;24:629–41. https://doi.org/10.1007/s11011-009-9164-3.
  226. Lee, HJ, Lee, JS, Pack, JK, Choi, HD, Kim, N, Kim, SH, et al.. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields. Radiat Res 2009;172:648–52. https://doi.org/10.1667/rr1771.1.
  227. Lee, HJ, Jin, YB, Kim, TH, Pack, JK, Kim, N, Choi, HD, et al.. The effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on rat testicular function. Bioelectromagnetics 2012;33:356–64. https://doi.org/10.1002/bem.20715.
  228. Poulletier de Gannes, F, Haro, E, Hurtier, A, Taxile, M, Athane, A, Ait-Aissa, S, et al.. Effect of in utero Wi-Fi exposure on the pre- and postnatal development of rats. Res B Dev Reprod Toxicol 2012;95:130–6. https://doi.org/10.1002/bdrb.20346.
  229. Imai, N, Kawabe, M, Hikage, T, Nojima, T, Takahashi, S, Shirai, T. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med 2011;57:204–9. https://doi.org/10.3109/19396368.2010.544839.
  230. Kolomytseva, MP, Gapeev, AB, Sadovnikov, VB, Chemeris, NK. Suppression of nonspecific resistance of the body under the effect of extremely high frequency electromagnetic radiation of low intensity. Biofizika 2002;47:71–7. (Article in Russian).
  231. Balmori, A. Murciélago rabudo–Tadarida teniotis. In: Carrascal, LM, Salvador, A, editors. Enciclopedia Virtual de los Vertebrados Españoles. Madrid, Spain: Museo National de Ciencias Naturales; 2004. Available from: http://www.vertebradosibericos.org/.
  232. Janać, B, Selaković, V, Rauš, S, Radenović, L, Zrnić, M, Prolić, Z. Temporal patterns of extremely low frequency magnetic field-induced motor behavior changes in Mongolian gerbils of different age. Int J Radiat Biol 2012;88:359–66. https://doi.org/10.3109/09553002.2012.652725.
  233. Löscher, W, Käs, G. Behavioral abnormalities in a dairy cow herd near a TV and radio transmitting antenna. Der Prakt Tierarzt 1998;79:437–44. (article in German).
  234. Löscher, W. Survey of effects of radiofrequency electromagnetic fields on production, health and behavior of farm animals. Der Prakt Tierarzt 2003;84:11. (article in German).
  235. Stärk, KD, Krebs, T, Altpeter, E, Manz, B, Grio, TC, Abelin, T. Absence of chronic effect of exposure to short-wave radio broadcast signal on salivary melatonin concentrations in dairy cattle. J Pineal Res 1997;22:171–6. https://doi.org/10.1111/j.1600-079x.1997.tb00320.x.
  236. Hultgren, J. Small electric currents affecting farm animals and man: a review with special reference to stray voltage. I. Electrical properties of the body and the problem of stray voltage. Vet Res Commun 1990;14:287–98. https://doi.org/10.1007/BF00350711.
  237. Hultgren, J. Small electric currents affecting farm animals and man: a review with special reference to stray voltage. II. Physiological effects and the concept of stress. Vet Res Commun 1990;14:299–308. https://doi.org/10.1007/BF00350712.
  238. Kirk, JH, Reese, ND, Bartlett, PC. Stray voltage on Michigan dairy farms. J Amer Vet Assoc 1984;185:426–8.
  239. Burchard, JF, Nguyen, DH, Block, E. Progesterone concentrations during estrous cycle of dairy cows exposed to electric and magnetic fields. Bioelectromagnetics 1998;19:438–43. https://doi.org/10.1002/(sici)1521-186x(1998)19:7<438::aid-bem6>3.0.co;2-2.
  240. Rodriguez, M, Petitclerc, D, Burchard, JF, Nguyen, DH, Block, E, Downey, BR. Responses of the estrous cycle in dairy cows exposed to electric and magnetic fields (60 Hz) during 8-h photoperiods. Anim Reprod Sci 2003;15:11–20. https://doi.org/10.1016/s0378-4320(02)00273-7.
  241. Burchard, JF, Monardes, H, Nguyen, DH. Effect of 10kV, 30 μT, 60 Hz electric and magnetic fields on milk production and feed intake in nonpregnant dairy cattle. Bioelectromagnetics 2003;24:557–63. https://doi.org/10.1002/bem.10132.
  242. Burchard, JF, Nguyen, DH, Rodriguez, R. Plasma concentrations of thyroxine in dairy cows exposed to 60 Hz electric and magnetic fields. Bioelectromagnetics 2006;27:553–9. https://doi.org/10.1002/bem.20253.
  243. Hjeresen, DL, Miller, MC, Kaune, KT, Phillips, RD. A behavioral response of swine to a 60 Hz electric field. Bioelectromagnetics 1982;3:443–51. https://doi.org/10.1002/bem.2250030407.
  244. Sikov, MR, Rommereim, DN, Beamer, JL, Buschbom, RL, Kaune, WT, Phillips, RW. Developmental studies of Hanford miniature swine exposed to 60-Hz electric fields. Bioelectromagnetics 1987;8:229–42. https://doi.org/10.1002/bem.2250080303.
  245. Bigu-del-Blanco, J, Romero-Sierra, C. The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. I. bird feathers as converse piezoelectric transducers. Biotelemetry 1975a;2:341–53.
  246. Bigu-del-Blanco, J, Romero-Sierra, C. The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. II. bird feathers as dielectric receptors of microwave radiation. Biotelemetry 1975b;2:354–64.
  247. Tanner, JA. Effect of microwave radiation on birds. Nature 1966;210:636. https://doi.org/10.1038/210636a0.
  248. Tanner, JA, Romero-Sierra, C, Davie, SJ. Non-thermal effects of microwave radiation on birds. Nature 1967;216:1139. https://doi.org/10.1038/2161139a0.
  249. van Dam, W, Tanner, JA, Romero-Sierra, C. A preliminary investigation of piezoelectric effects in chicken feathers. IEEE Trans Biomed Eng 1970;17:71. https://doi.org/10.1109/tbme.1970.4502689.
  250. Manville, AMII. The ABC’s of avoiding bird collisions at communications towers: the next steps. In: Proceedings of the avian interactions workshop. USA: Charleston, SC; 1999.
  251. Manville, AMII. U.S. fish and wildlife service involvement with towers, turbines, power lines, buildings, bridges and MBTA E.O. 13186 MOUs — Lessons learned and next steps. migratory bird treaty act meeting — a workshop held in the Washington fish and wildlife office. Lacey, WA: 32 PowerPoint slides; 2009.
  252. Manville, AMII. Towers, turbines, power lines and buildings — steps being taken by the U.S. Fish and Wildlife Service to avoid or minimize take of migratory birds at these structures. In: Rich, TD, Arizmendi, C, Demarest, DW, Thompson, C, editors. Tundra to Tropics: Connecting Birds, Habitats and People. Proceedings of the 4th International Partners in Flight Conference. Texas, USA: McAllen; 2009:262–72 pp.
  253. Beason, RC, Semm, P. Responses of neurons to amplitude modulated microwave stimulus. Neurosci Lett 2002;333:175–8. https://doi.org/10.1016/s0304-3940(02)00903-5.
  254. Semm, P, Beason, RC. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 1990;25:735–40. https://doi.org/10.1016/0361-9230(90)90051-z.
  255. Wasserman, FE, Dowd, C, Schlinger, BA, Byman, D, Battista, SP, Kunz, TH. The effects of microwave radiation on avian dominance behavior. Bioelectronmagnetics 1984;5:331–9. https://doi.org/10.1002/bem.2250050306.
  256. DiCarlo, A, White, N, Guo, F, Garrett, P, Litovitz, T. Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J Cell Biochem 2002;84:447–54. https://doi.org/10.1002/jcb.10036.
  257. Grigor’ev, I. Biological effects of mobile phone electromagnetic field on chick embryo (risk assessment using the mortality rate). Radiats Biol Radioecol 2003;43:541–3.
  258. Xenos, TD, Magras, IN. Low power density RF radiation effects on experimental animal embryos and fetuses. In: Stavroulakis, P, editor. Biological effects of electromagnetic fields. New York, NY, USA: Springer International Publishers; 2003:579–602 pp.
  259. Batellier, F, Couty, I, Picard, D, Brillard, JP. Effects of exposing chicken eggs to a cell phone in "call" position over the entire incubation period. Theriogenology 2008;69:737–45. https://doi.org/10.1016/j.theriogenology.2007.12.006.
  260. Tsybulin, O, Sidorik, E, Kyrylenko, S, Henshel, D, Yakymenko, I. GSM 900 MHz microwave radiation affects embryo development of Japanese quails. Electromagn Biol Med 2012;31:75–86. https://doi.org/10.3109/15368378.2011.624656.
  261. Tsybulin, O, Sidorik, E, Brieieva, O, Buchynska, L, Kyrylenko, S, Henshel, D, et al.. GSM 900 MHz cellular phone radiation can either stimulate or depress early embryogenesis in Japanese quails depending on the duration of exposure. Int J Radiat Biol 2013;89:756–63. https://doi.org/10.3109/09553002.2013.791408.
  262. Berman, E, Chacon, L, House, D, Koch, BA, Koch, WE, Leal, J. Development of chicken embryos in a pulsed magnetic field. Bioelectromagnetics 1990;11:169–87. https://doi.org/10.1002/bem.2250110208.
  263. Ubeda, A, Trillo, MA, Chacón, L, Blanco, MJ, Leal, J. Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics 1994;15:385–98. https://doi.org/10.1002/bem.2250150503.
  264. Fernie, KJ, Bird, DM, Petitclerc, D. Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels. Environ Health Perspect 1999;107:901–4. https://doi.org/10.1289/ehp.99107901.
  265. Fernie, KJ, Bird, DM, Dawson, RD, Lague, PC. Effects of electromagnetic fields on the reproductive success of American kestrels. Physiol Biochem Zool 2000;73:60–5. https://doi.org/10.1086/316726.
  266. Fernie, KJ, Leonard, NJ, Bird, DM. Behavior of free-ranging and captive American kestrels under electromagnetic fields. J Toxicol Environ Health Part A. 2000;59:597–603. https://doi.org/10.1080/009841000156619.
  267. Fernie, KJ, Bird, DM. Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ Res 2001;86:198–207. https://doi.org/10.1006/enrs.2001.4263.
  268. Fernie, KJ, Reynolds, SJ. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review. Toxicol Environ Health B Crit Rev 2005;8:127–40. https://doi.org/10.1080/10937400590909022.
  269. Balmori, A. Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia). Electromagn Biol Med 2005;24:109–19. https://doi.org/10.1080/15368370500205472.
  270. Bernhardt, JH. Non-ionizing radiation safety: radiofrequency radiation, electric and magnetic fields. Phys Med Biol 1992;37:80–4. https://doi.org/10.1088/0031-9155/37/4/001.
  271. Balmori, A, Hallberg, O. The urban decline of the house sparrow (Passer domestics): a possible link with electromagnetic radiation. Electromagn Biol Med 2007;26:141–51. https://doi.org/10.1080/15368370701410558.
  272. Everaert, J, Bauwens, D. A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus). Electromagn Biol Med 2007;26:63–72. https://doi.org/10.1080/15368370701205693.
  273. Southern, W. Orientation of gull chicks exposed to Project Sanguine’s electromagnetic field. Science 1975;189:143. https://doi.org/10.1126/science.1138371.
  274. Larkin, RP, Sutherland, PJ. Migrating birds respond to Project Seafarer’s electromagnetic field. Science 1977;195:777–9. https://doi.org/10.1126/science.195.4280.777-a.
  275. U.S. Fish and Wildlife Service. Birds of Conservation Concern. Arlington, VA, USA: United States Department of Interior, Fish and Wildlife Service, Division of Migartory Bird Management; 2008:85 p.
  276. Windle, BC. The Effects of electricity and magnetism on development. J Anat Physiol 1895;29:346–51. https://doi.org/10.1086/an.1895.29.issue-346.
  277. Mckinley, GM, Charles, DR. Certain biological effects of high frequency fields. Science 1930;71:490. https://doi.org/10.1126/science.71.1845.490.
  278. Frings, H. Factors determining the effects of radio-frequency electromagnetic fields on insects and the materials they infect. J Econ Entomol 1952;45:396. https://doi.org/10.1093/jee/45.3.396.
  279. Carpenter, RI, Livingstone, EM. Evidence for nonthermal effects of microwave radiation: abnormal developement of irradiated insect pupae. IEEE Trans Microw Theor Tech 1971;MMT-19:173. https://doi.org/10.1109/tmtt.1968.1127480.
  280. Imig, CJ, Searle, GW. Review of work conducted at State University of Iowa on organisms exposed to 2450 mc cw microwave irradiation. Rome, NY, USA: Griffin AFB, Rome Air Development Center; 1962.
  281. Searle, GW, Duhlen, RW, Imig, CJ, Wunder, CC, Thomson, JD, Thomas, JA, et al.. Effect of 2450 mc microwaves in dogs, rats, and larvae of the common fruit fly. In: Peyton, MF, editor. Biological effects of microwave radiation, vol 1. New York, NY, USA: Plenum Press; 1961:187 p.
  282. Beyer, EC, Pay, TL, Irwin, ETJr. Development and genetic testing of Drosophila with 2450 MHz microwave radation. In: Hodge, DM, editor Radiation bio-effects summary report; 1970:45 p.
  283. Heller, JH, Mickey, GH. Non-thermal effects of radiofrequency in biological systems. In: Digest of the 1961 International Conference on Medical Electronics. New York, NY, USA: Plenum Press; 1961:152 p.
  284. Tell, RA. Microwave absorption characteristics of Drosophila melanogaster. In: Twinbrook research laboratory annual report. Washinton, D.C., USA: EPA; 1971:155 p.
  285. Weisbrot, D, Lin, H, Ye, L, Blank, M, Goodman, R. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 2003;89:48–55. https://doi.org/10.1002/jcb.10480.
  286. Panagopoulos, DJ, Chavdoula, ED, Nezis, IP, Margaritis, LH. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat Res 2007;626:69–78. https://doi.org/10.1016/j.mrgentox.2006.08.008.
  287. Panagopoulos, DJ, Messini, N, Karabarbounis, A, Philippetis, AL, Margaritis, LH. Radio frequency electromagnetic radiation within “safety levels” alters the physiological function of insects. In: Kostarakis, P, Stavroulakis, P, editors. Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields. Greece: Heraklion, Crete; 2000:169–75 pp.
  288. Panagopoulos, DJ, Margaritis, LH. Theoretical considerations for the biological effects of electromagnetic fields. In: Stavroulakis, P, editor. Biological effects of electromagnetic fields. New York, N, USA: Springer International Publishers; 2003:5–33 pp.
  289. Panagopoulos, DJ, Karabarbounism, A, Margaritis, LH. Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med 2004;23:29–43. https://doi.org/10.1081/jbc-120039350.
  290. Gonet, B, Kosik-Bogacka, DI, Kuźna-Grygiel, W. Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations. Bioelectromagnetics 2009;30:687–9. https://doi.org/10.1002/bem.20528.
  291. Savić, T, Janać, B, Todorović, D, Prolić, Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med 2011;30:108–14. https://doi.org/10.3109/15368378.2011.566780.
  292. Newland, PL, Hunt, E, Sharkh, SM, Hama, N, Takahata, M, Jackson, CW. Static electric field detection and behavioural avoidance in cockroaches. J Exp Biol 2008;211:3682–90. https://doi.org/10.1242/jeb.019901.
  293. Prolić, Z, Jovanović, R, Konjević, G, Janać, B. Behavioral differences of the insect morimus funereus (Coleoptera, Cerambycidae) exposed to an extremely low frequency magnetic field. Electromagn Biol Med 2003;22:63–73.
  294. Berberich, G, Berberich, M, Grumpe, A, Wöhler, C, Schreiber, U. Early results of three-year monitoring of red wood ants’ behavioral changes and their possible correlation with earthquake events. Animals 2013;3:63–84. https://doi.org/10.3390/ani3010063.
  295. Anderson, JB, Vander Meer, RK. Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften 1993;80:568–70. https://doi.org/10.1007/bf01149274.
  296. Banks, AN, Srygley, RB. Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: formicidae). Ethology 2003;109:835–46. https://doi.org/10.1046/j.0179-1613.2003.00927.x.
  297. Jander, R, Jander, U. The light and magnetic compass of the weaver ant, Oecophylla smaragdina, (Hymenoptera: formicidae). Ethology 1998;104:743–58.
  298. Esquivel, DMS, Acosta-Avalos, D, El-Jaick, LJ, Cunha, ADM, Malheiros, MG, Wajnberg, E. Evidence for magnetic material in the fire ant Solenopsis sp.by electron paramagnetic resonance measurements. Naturwissenschaften 1999;86:30–2. https://doi.org/10.1007/s001140050564.
  299. Riveros, AJ, Srygley, RB. Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass? Anim Behav 2008;75:1273e1281. https://doi.org/10.1016/j.anbehav.2007.09.030.
  300. Acosta-Avalos, D, Pinho, AT, de Souza Barbosa, J, Belova, N. Alternating magnetic fields of 60 Hz affect magnetic orientation and magnetosensitivity of fire ants. J Insect Behav 2015;28:664–73. https://doi.org/10.1007/s10905-015-9534-0.
  301. Camlitepe, Y, Aksoy, V, Uren, N, Yilmaz, A. An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera : formicidae). Acta Biol Hung 2005;56:215–24. https://doi.org/10.1556/abiol.56.2005.3-4.5.
  302. Cammaerts, MC, Rachidi, Z, Bellens, F, De Doncker, P. Food collection and response to pheromones in an ant species exposed to electromagnetic radiation. Electromagn Biol Med 2013;32:315–32. https://doi.org/10.3109/15368378.2012.712877.
  303. Cammaerts, MC, Vandenbosch, GAE, Volski, V. Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti. J Insect Behav 2014;27:514–26. https://doi.org/10.1007/s10905-014-9446-4.
  304. Cammaerts, MC, De Doncker, P, Patris, X, Bellens, F, Rachidi, Z, Cammaerts, D. GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagn Biol Med 2012;31:151–65. https://doi.org/10.3109/15368378.2011.624661.
  305. Vander Meer, RK, Slowik, TJ, Thorvilson, HG. Semiochemicals released by electrically stimulated red imported fire ants, Solenopsis invicta. J Chem Ecol 2002;28:2585–600. https://doi.org/10.1023/a:1021448522147.
  306. Forel, A. The senses of insects. London,UK: Methuen & Co; 1886. English translation 1908.
  307. Wang, Q, Goodger, JQD, Woodrow, IE, Elgar, MA. Location-specific cuticular hydrocarbon signals in a social insect. Proc Biol Sci 2016;283:20160310. https://doi.org/10.1098/rspb.2016.0310.
  308. Acosta-Avalos, D, Wajnberg, E, Oliveira, PS, Leal, I, Farina, M, Esquivel, DMS. Isolation of magnetic nanoparticles from Pachycondyla marginata ants. J Exp Biol 1999;202:2687–92. https://doi.org/10.1242/jeb.202.19.2687.
  309. Wajnberg, E, Acosta-Avalos, D, El-Jaick, LJ, Abracado, L, Coelho, JLA, Bazukis, AF, et al.. Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens. Biophys J 2000;78:1018–23. https://doi.org/10.1016/s0006-3495(00)76660-4.
  310. Wajnberg, E, Cernicchiaro, GR, Esquivel, DMS. Antennae: the strongest magnetic part of the migratory ant. Biometals 2004;17:467–70. https://doi.org/10.1023/b:biom.0000029443.93732.62.
  311. de Oliveira, JF, Wajnberg, E, deSouza Esquivel, DM, Weinkauf, S, Winklhofer, M, Hanzlik, M. Ant antennae: are they sites for magnetoreception? J R Soc Interface 2010;7:143–52. https://doi.org/10.1098/rsif.2009.0102.
  312. Vargová, B, Kurimský, J, Cimbala, R, Kosterec, M, Majláth, I, Pipová, N, et al.. Ticks and radio-frequency signals: behavioural response of ticks (Dermacentor reticulatus) in a 900 MHz electromagnetic field. Syst Appl Acarol 2017;22:683–93. https://doi.org/10.11158/saa.22.5.7.
  313. Vargová, B, Majláth, I, Kurimský, J, Cimbala, R, Kosterec, M, Tryjanowski, P, et al.. Electromagnetic radiation and behavioural response of ticks: an experimental test. Exp Appl Acarol 2018;75:85–95. https://doi.org/10.1007/s10493-018-0253-z.
  314. Frątczak, M, Vargová, B, Tryjanowski, P, Majláth, I, Jerzak, L, Kurimský, J, et al.. Infected Ixodes ricinus ticks are attracted by electromagnetic radiation of 900 MHz. Ticks Tick-borne Dis 2020;11:101416. https://doi.org/10.1016/j.ttbdis.2020.101416.
  315. Brower, LP. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J Lepid Soc 1995;49:304–85.
  316. Brower, LP. Monarch butterfly orientation: missing pieces of a magnificent puzzle. J Biol 1996;199:93–103. https://doi.org/10.1242/jeb.199.1.93.
  317. Urquhart, FA. The monarch butterfly. Toronto, Canada: University of Toronto Press; 1960.
  318. Urquhart, FA. Found at last: the monarch’s winter home. Natl Geogr 1976;150:161–73. https://doi.org/10.1080/00905997608407796.
  319. Urquhart, FA, Urquhart, NR. Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Can J Zool 1978;56:1759–64. https://doi.org/10.1139/z78-240.
  320. Reppert, SM, Gegear, RJ, Merlin, C. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 2010;33:399–406. https://doi.org/10.1016/j.tins.2010.04.004.
  321. Reppert, SM, de Roode, JC. Demystifying monarch butterfly migration. Curr Biol 2018;28:R1009–22. https://doi.org/10.1016/j.cub.2018.02.067.
  322. Froy, O, Gotter, AL, Casselman, AL, Reppert, SM. Illuminating the circadian clock in monarch butterfly migration. Science 2003;300:1303–5. https://doi.org/10.1126/science.1084874.
  323. Lohmann, KJ. Sea turtles: navigating with magnetism. Curr Biol 2007;17:R102–104. https://doi.org/10.1016/j.cub.2007.01.023.
  324. Merlin, C, Gegear, RJ, Reppert, SM. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 2009;325:1700–4. https://doi.org/10.1126/science.1176221.
  325. Mouritsen, H, Frost, BJ. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci Unit States Am 2002;99:10162–6. https://doi.org/10.1073/pnas.152137299.
  326. Oliveira, EG, Dudley, R, Srygley, RB. Evidence for the use of a solar compass by neotropical migratory butterflies. Bull Ecol Soc Am 1996;775:332.
  327. Oliveira, EG, Srygley, RB, Dudley, R. Do neotropical migrant butterflies navigate using a solar compass? J Exp Biol 1998;201:3317–31. https://doi.org/10.1242/jeb.201.24.3317.
  328. Perez, SM, Taylor, OR. Monarch butterflies’ migratory behavior persists despite changes in environmental conditions. In: Oberhauser, KS, Solensky, MJ, editors. The monarch butterfly: biology and conservation. Cornell, NY, USA: Cornell University Press; 2004:85–9 pp.
  329. Perez, SM, Taylor, OR, Jander, R. A sun compass in monarch butterflies. Nature 1997;387:29. https://doi.org/10.1038/387029a0.
  330. Perez, SM, Taylor, OR, Jander, R. The effect of a strong magnetic field on monarch butterfly (Danaus plexippus) migratory behavior. Naturwissenschaften 1999;86:140–3. https://doi.org/10.1007/s001140050587.
  331. Reppert, SM. A colorful model of the circadian clock. Cell 2006;124:233–6. https://doi.org/10.1016/j.cell.2006.01.009.
  332. Reppert, SM. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation. Cold Spring Harbor Symp Quant Biol 2007;72:113–18. https://doi.org/10.1101/sqb.2007.72.056.
  333. Reppert, SM, Zhu, H, While, RH. Polarized light helps monarch butterflies navigate. Curr Biol 2004;14:155–8. https://doi.org/10.1016/j.cub.2003.12.034.
  334. Sauman, I, Briscoe, AD, Zhu, H, Ski, D, Froy, O, Stalleicken, J, et al.. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 2005;46:457–67. https://doi.org/10.1016/j.neuron.2005.03.014.
  335. Srygley, R, Oliveira, E. Sun compass and wind drift compensation in migrating butterflies. J Navig 2001;54:405–17.https://doi.org/10.1017/S0373463301001448.
  336. Zhu, H, Yuan, Q, Briscoe, AD, Froy, O, Casselman, A, Reppert, SM. The two CRYs of the butterfly. Curr Biol 2005;15:R953–954. https://doi.org/10.1016/j.cub.2005.11.030.
  337. Zhu, H, Casselman, A, Reppert, SM. Chasing migration genes: a brain expressed sequence Tag resource for summer and migratory Monarch butterflies (Danaus plexippus). PloS One 2008;3:e1345. https://doi.org/10.1371/journal.pone.0001345.
  338. Zhu, H, Gegear, RJ, Casselman, A, Kanginakudru, S, Reppert, SM. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol 2009;7:14. https://doi.org/10.1186/1741-7007-7-14.
  339. Kirschvink, JL. Birds, bees and magnetism: a new look at the old problem of magnetoreception. Trends Neurosci 1982;5:160–7. https://doi.org/10.1016/0166-2236(82)90090-x.
  340. Kirschvink, JL, Gould, JL. Biogenic magnetite as a basis for magnetic field sensitivity in animals. Biosystems 1981;13:181–201. https://doi.org/10.1016/0303-2647(81)90060-5.
  341. Kyriacou, CP. Clocks, cryptochromes and Monarch migrations. J Biol 2009;8:55. https://doi.org/10.1186/jbiol153.
  342. Yuan, Q, Metterville, D, Briscoe, AD, Reppert, SM. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 2007;24:948–55. https://doi.org/10.1093/molbev/msm011.
  343. Jones, DS, MacFadden, BJ. Induced magnetization in the monarch butterfly, Danaus plexippus (insecta, Lepidoptera). J Exp Biol 1982;96:1–9. https://doi.org/10.1242/jeb.96.1.1.
  344. Stindl, R, Stindl, WJr. Vanishing honey bees: is the dying of adult worker bees a consequence of short telomeres and premature aging? Med Hypotheses 2010;75:387–90. https://doi.org/10.1016/j.mehy.2010.04.003.
  345. van Engelsdorp, D, Hayes, JJr., Underwood, RM, Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PloS One 2008;3:e4071. https://doi.org/10.1371/journal.pone.0004071.
  346. Schacker, M. A spring without bees, how colony collapse disorder has endangered our food supply. Connecticut, USA: Lyons Press, Guilford; 2008:52–3 pp.
  347. Schmuck, R, Schoning, R, Stork, A, Schramel, O. Risk posed to honey bees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Mamag Sci 2001;57:225–38. https://doi.org/10.1002/ps.270.
  348. Bacandritsos, N, Granatom, A, Budge, G, Papanastasiou, I, Roinioti, E, Caldon, M, et al.. Sudden deaths and colony population decline in Greek honey bee colonies. J Invertebr Pathol 2010;105:335–40. https://doi.org/10.1016/j.jip.2010.08.004.
  349. Bromenshenk, JJ, Henderson, CB, Wick, CH, Stanford, MF, Zulich, AW, Jabbour, RE, et al.. Iridovirus and microsporidian linked to honey bee colony decline. PloS One 2010;5:e13181. https://doi.org/10.1371/journal.pone.0013181.
  350. U.S. Department of Agriculture. Honey bee colonies, ISSN:2470-993X released august 1, 2017, national agricultural statistics service (NASS), agricultural statistics board, United States department of agriculture (USDA); 2017. Available from: https://www.nass.usda.gov/Publications/Todays_Reports/reports/hcny0817.pdf .
  351. U.S. Department of Agriculture. Honey bee colonies, ISSN:2470-993X released august 1, 2019, national agricultural statistics service (NASS), agricultural statistics board, United States department of agriculture (USDA); 2019. Available from: https://downloads.usda.library.cornell.edu/usda-esmis/files/rn301137d/f7623q868/ft849239n/hcny0819.pdf .
  352. Bee Informed Partnership 2018-2019. Honey bee colony losses in the United States: preliminary results, 2019. Available from: https://beeinformed.org/results/2018-2019/ .
  353. U.S. Department of the Interior, Fish and Wildlife Service 50 CFR Part 17 [Docket No. FWS–R3–ES–2015–0112; 4500030113] RIN 1018–BB66 Endangered and Threatened Wildlife and Plants; Endangered Species Status for Rusty Patched Bumble Bee. 3186 Federal Register/ Vol. 82, No. 7 / Wednesday, January 11, 2017 / Rules and Regulations. Available from: https://www.govinfo.gov/content/pkg/FR-2017-01-11/pdf/2017-00195.pdf.
  354. Mathiasson, ME, Rehan, SM. Status changes in the wild bees of north‐eastern North America over 125 years revealed through museum specimens. Insect Conserv Divers 2019;12:278–88.
  355. Brodschneider, R, Gray, A, Adjlane, N, Ballis, A, Brusbardis, V, Charrière, JD, et al.. Multi-country loss rates of honey bee colonies during winter 2016/2017. COLOSS survey. J Apicult Res 2018;57:452–7. https://doi.org/10.1080/00218839.2018.1460911.
  356. Kulhanek, K, Steinhauer, N, Rennich, K, Caron, DM, Sagili, RR, Pettis, JS, et al.. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J Apicult Res 2017;56:328–40. https://doi.org/10.1080/00218839.2017.1344496.
  357. Miller-Struttmann, NE. Where have all the flowers gone: complexity and worldwide bee declines. PLOS Blogs 2016. Available from: https://blogs.plos.org/ecology/2016/01/11/where-have-all-the-flowers-gone-complexity-worldwide-bee-declines-by-nicole-miller-struttmann/.
  358. Potts, SG, Roberts, SPM, Dean, R, Marris, G, Brown, MA, Jones, R, et al.. Declines of managed honey bees and beekeepers in Europe. J Apicult Res 2010;49:1. https://doi.org/10.3896/ibra.1.49.1.02.
  359. Vanbergen, AJ, Potts, SG, Vian, A, Malkemper, EP, Young, J, Tscheulin, T. Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): evidence and knowledge gaps. Sci Total Environ 2019;695:133833. https://doi.org/10.1016/j.scitotenv.2019.133833.
  360. Miller-Struttmann, NE, Geib, JC, Franklin, JD, Kevan, PG, Holdo, RM, Ebert-May, D, et al.. Functional mismatch in a bumble bee pollination mutualism under climate change. Science 2015;349:1541–4. https://doi.org/10.1126/science.aab0868.
  361. Powney, GD, Carvell, C, Edwards, M, Morris, RKA, Roy, HE, Woodcock, BA. Widespread losses of pollinating insects in Britain. Nat Commun 2019;10:1018. https://doi.org/10.1038/s41467-019-08974-9.
  362. U.S. National Research Council. Status of pollinators in North America. Committee on the Status of Pollinators in North America. Washington, D.C: National Academies Press; 2007 [Accessed 13 May 2007].
  363. von Frisch, K. The dancing bees, an account of the life and senses of the honey bee. Vienna, Austria: Springer-Verlag Wien; 1954.
  364. von Frisch, K. The dance language and orientation of bees. Princeton, NJ, USA: Belknap Press of Harvard University Press; 1967.
  365. Hammer, M, Menze, lR. Learning and memory in the honeybee. J Neurosci 1995;15:1617–30. https://doi.org/10.1523/jneurosci.15-03-01617.1995.
  366. Walker, MM, Bitterman, ME. Attached magnets impair magnetic field discrimination by honeybees. J Exp Biol 1989;141:447–51. https://doi.org/10.1242/jeb.141.1.447.
  367. Kirschvink, JL, Kobayashi-Kirschvink, A. Is geomagnetic sensitivity real? Replication of the Walker–Bitterman conditioning experiment in honeybees. Am Zool 1991;31:169–85. https://doi.org/10.1093/icb/31.1.169.
  368. Walker, MM, Bitterman, ME. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J Exp Biol 1989;145:489–94. https://doi.org/10.1242/jeb.145.1.489.
  369. Valkova, T, Vacha, M. How do honeybees use their magnetic compass? Can they see the north? Bull Entomol Res 2012;102:461–7. https://doi.org/10.1017/s0007485311000824.
  370. Clarke, D, Whitney, H, Sutton, G, Robert, D. Detection and learning of floral electric fields by bumblebees. Science 2013;340:66–9. https://doi.org/10.1126/science.1230883.
  371. Clarke, D, Morley, E, Robert, D. The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol 2017;203:737–48. https://doi.org/10.1007/s00359-017-1176-6.
  372. Sutton, GP, Clarke, D, Morley, EL, Robert, D. Mechanosensory hairs in bumble bees (Bombus terrestris) detect weak electric fields. Proc Natl Acad Sci Unit States Am 2016;113:7261–5. https://doi.org/10.1073/pnas.1601624113.
  373. Greggers, U, Koch, G, Schmidt, V, Durr, A, Floriou-Servou, A, Piepenbrock, D, et al.. Reception and learning of electric fields in bees. Proc R Soc B 2013;280:20130528. https://doi.org/10.1098/rspb.2013.0528.
  374. Erickson, EH. Surface electric potentials on worker honeybees leaving and entering the hive. J Apicult Res 1975;14:141–7. https://doi.org/10.1080/00218839.1975.11099818.
  375. Colin, ME, Richard, D, Chauzy, S. Measurement of electric charges carried by bees: evidence of biological variations. Electromagn Biol Med 1991;10:17–32. https://doi.org/10.3109/15368379109031397.
  376. Corbet, SA, Beament, J, Eisikowitch, D. Are electrostatic forces involved in pollentransfer? Plant Cell Environ 1982;5:125–9. https://doi.org/10.1111/1365-3040.ep11571488.
  377. Warnke, U. Effects of electric charges on honeybees. Bee World 1976;57:50–6. https://doi.org/10.1080/0005772x.1976.11097592.
  378. Warnke, U. Birds, bees and mankind. The competence initiative for the humanity, environment and democracy. Brochure 1 2007. Available from: https://ecfsapi.fcc.gov/file/7521097891.pdf.
  379. Yong, E. Bees can sense the electric fields of flowers. National Geographic 2013.
  380. Wellenstein, G. The influence of high-tension lines on honeybee colonies (Apis Mellifical L). Zeitschrift Fur Angewandte Entomologie; 1973:86–94 pp. (Trans. From German for Batelle Pacific Northwest laboratories, Addis Translations International). https://doi.org/10.1111/j.1439-0418.1973.tb01783.x.
  381. Rogers, LE, Warren, JL, Gano, KA, Hinds, RL, Fitzner, RE, Gilbert, RO. Environmental studies of 1100-kV prototype transmission line: an interim report Batelle Pacific Northwest Laboratories. Portland, Oregon: Report Prepared for Bonneville Power Administration; 1980.
  382. Rogers, LE, Warren, JL, Hinds, NR, Gano, KA, Fitzner, RE, Piepel, GF. Environmental studies of 1100-kV prototype transmission line: an annual report for the 1981 study period Batelle Pacific Northwest Laboratories. Portland, Oregon: Report Prepared for Bonneville Power Administration; 1982.
  383. Rogers, LE, Breedlow, PA, Carlile, DW, Gano, KA. Environmental studies of 1100-kV prototype transmission line: an annual report for the 1983 study period Batelle Pacific Northwest Laboratories. Portland, Oregon: Report Prepared for Bonneville Power Administration; 1984.
  384. Rogers, LE, Breedlow, PA, Carlile, DW, Gano, KA. Environmental studies of 1100-kV prototype transmission line: an annual report for the 1984 study period Batelle Pacific Northwest Laboratories. Portland, Oregon: Report Prepared for Bonneville Power Administration; 1984.
  385. Greenberg, B, Bindokas, VP, Gaujer, JR. Biological effects of a 760 kVtransmission line: exposures and thresholds in honeybee colonies. Bioelectromagnetics 1981;2:315–28. https://doi.org/10.1002/bem.2250020404.
  386. Greenberg, B, Bindokas, VP, Gauger, JR. Extra-high voltage transmission lines: mechanisms of biological effects on honeybee colonies. EA-4218. Palo Alto, California: Prepared for Electric Power Research Institute; 1985.
  387. U.S. Department of Energy, Bonneville Power Administration, Lee, JM, Chartier, VL, Hartmann, DP, Lee, GE, Pierce, KS, Shon, FL, et al.. Electrical and biological effects of transmission lines: a review. Portland, Oregon, USA;1989, pp. 24–25.
  388. Bindokas, VP, Gauger, JR, Greenberg, B. Mechanism of biological effects observed in honey bees (Apis mellifera L.) hived under extra-high-voltage transmission lines. Bioelectromagnetics 1988;9:285–301. https://doi.org/10.1002/bem.2250090310.
  389. Migdał, P, Murawska, A, Bienkowski, P, Berbec, E, Roman, A. Changes in honeybee behavior parameters under the Iinfluence of the E-field at 50 Hz and variable intensity. Animals 2021;11:247. https://doi.org/10.3390/ani11020247.
  390. Korall, H, Leucht, T, Martin, H. Bursts of magnetic fields induce jumps of misdirection in bees by a mechanism of magnetic resonance. J Comp Physiol 1988;162:279–84. https://doi.org/10.1007/bf00606116.
  391. Pereira-Bomfim, MGC, Antonialli-Junior, WF, Acosta-Avalos, D. Effect of magnetic field on the foraging rhythm and behavior of the swarm-founding paper wasp Polybia paulista Ihering (Hymenoptera: vespidae). Sociobiology 2015;62:99–104. https://doi.org/10.13102/sociobiology.v62i1.99-104.
  392. Shepherd, S, Jackson, CW, Sharkh, SM, Aonuma, H, Oliveira, EE, Newland, PL. Extremely low-frequency electromagnetic fields entrain locust wingbeats. Bioelectromagnetics 2021;42:296–308. https://doi.org/10.1002/bem.22336.
  393. Wyszkowska, J, Shepherd, S, Sharkh, S, Jackson, CW, Newland, PL. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci Rep 2016;6:36413. https://doi.org/10.1038/srep36413.
  394. Harst, W, Kuhn, J, Stever, H. Can electromagnetic exposure cause a change in behaviour? Studying possible non-thermal influences on honey bees—an approach within the framework of educational informatics. Acta Systemica-IIAS Internat J. 2006;6:1–6.
  395. Kimmel, S, Kuhn, J, Harst, W, Stever, H. Electromagnetic radiation: influences on honeybees (Apis mellifera). In: IIAS – InterSymp Conference. Baden-Baden, Germany; 2007. Available from: https://www.researchgate.net/publication/292405747_Electromagnetic_radiation_Influences_on_honeybees_Apis_mellifera_IIAS-InterSymp_Conference.
  396. Stever, H, Kimmel, S, Harst, W, Kuhn, J, Otten, C, Wunder, B. Verhaltensänderung der Honigbiene Apis mellifera unter elektromagnetischer Exposition. Folgeversuch 2006. Available from: http://agbi.uni-landau.de/.
  397. Favre, D. Mobile phone-induced honeybee worker piping. Apidologie 2011;42:270–9. https://doi.org/10.1007/s13592-011-0016-x.
  398. Darney, K, Giraudin, A, Joseph, R, Abadie, P, Aupinel, P, Decourtye, A, et al.. Effect of high-frequency radiations on survival of the honeybee (Apis mellifera L.). Apidologie 2016;47:703–10. https://doi.org/10.1007/s13592-015-0421-7.
  399. Odemer, R, Odemer, F. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Sci Total Environ 2019;661:553–62. https://doi.org/10.1016/j.scitotenv.2019.01.154.
  400. Sharma, VP. Kumar NR Changes in honeybee behaviour and biology under the influence of cellphone radiations. Curr Sci 2010;98:1376–8.
  401. Vilić, M, Tlak Gajger, I, Tucak, P, Štambuk, A, Šrut, M, Klobučar, G, et al.. Effects of short-term exposure to mobile phone radiofrequency (900 MHz) on the oxidative response and genotoxicity in honey bee larvae. JApic Res 2017;56:430–8.
  402. Kumar, NR, Sangwan, S, Badotra, P. Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicol Int 2011;18:70–2. https://doi.org/10.4103/0971-6580.75869.
  403. Sharma, A. Biochemical changes in Apis mellifera L. worker brood induced by cell phone radiation. M Phil. Thesis. Chnadigarh, India: Department of Zoology. Punjab University; 2008.
  404. Mall, P, Kumar, Y. Effect of electromagnetic radiation on brooding, honey production and foraging behaviour of European honey bees (Apis mellifera L.). Afr J Agric Res 2014;9:1078–85.
  405. Mixson, TA, Abramson, CI, Nolf, SL, Johnson, GA, Serrano, E, Wells, H. Effect of GSM cellular phone radiation on the behavior of honey bees (Apis mellifera). Sci Bee Cult 2009;1:22–7.
  406. Lazaro, A, Chroni, A, Tscheulin, T, Devalez, J, Matsoukas, C, Petanidou, T. Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. J Insect Conserv 2016;20:315–24. https://doi.org/10.1007/s10841-016-9868-8.
  407. Taye, RR, Deka, MK, Rahman, A, Bathari, M. Effect of electromagnetic radiation of cell phone tower on foraging behaviour of Asiatic honey bee, Apis cerana F. (Hymenoptera: apidae). J Entomol Zool Study 2017;5:1527–9.
  408. Vijver, MG, Bolte, JFB, Evans, TR, Tamis, WLM, Peijnenburg, WJGM, Musters, CJM, et al.. Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagn Biol Med 2013;33:21–8. https://doi.org/10.3109/15368378.2013.783846.
  409. Bolte, JF, Eikelboom, T. Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area. Environ Int 2012;48:133–42. https://doi.org/10.1016/j.envint.2012.07.006.
  410. ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Germany: International Council on Non-Ionizing Radiation (ICNIRP). Oberschleisseim; 1998.
  411. Thielens, A, Bell, D, Mortimore, DB, Greco, MK, Martens, L, Joseph, W. Exposure of insects to radio-frequency electromagnetic fields from 2 to 120 GHz. Sci Rep 2018;8:3924. https://doi.org/10.1038/s41598-018-22271-3.
  412. Thielens, A, Greco, MK, Verloock, L, Martens, L, Joseph, W. Radio-frequency electromagnetic field exposure of western honey bees. Sci Rep 2020;10:461. https://doi.org/10.1038/s41598-019-56948-0.
  413. Kumar, SS. Colony collapse disorder (CCD) in honey bees caused by EMF radiation. Bioinformation 2018;14:521–4. https://doi.org/10.6026/97320630014521.
  414. Panagopoulos, DJ. Man-made electromagnetic radiation is not quantized. In: Horizons in world physics, vol 296. ISBN 978-1-53614-125-2. Hauppauge, NY, USA: Reimer A., 2018 Nova Science Publishers, Inc; 2018. Available from: https://www.researchgate.net/publication/327578880_Man-Made_Electromagnetic_Radiation_Is_Not_Quantized.
  415. Kostoff, RN. Adverse effects of wireless radiation. PDF 2019. Available from: http://hdl.handle.net/1853/61946.
  416. Kostoff, RN, Lau, CGY. Modified health effects of non-ionizing electromagnetic radiation combined with other agents reported in the riomedical literature. In: Geddes, CG, editor. Microwave effects on DNA and proteins. New York, NY, USA: Springer International Publishing; 2017.
  417. IUCN. The International Union for Conservation of Nature, global amphibian assessment. Washington, DC: Center for Applied Biodiversity Science; 2004.
  418. Stuart, SN, Chanson, JS, Cox, NA, Young, BE, Rodrigues, ASL, Fischman, DL, et al.. Status and trends of amphibian declines and extinctions worldwide. Science 2004;306:1783–6. https://doi.org/10.1126/science.1103538.
  419. Blaustein, AR, Johnson, PTJ. The complexity of deformed amphibians. Front Ecol Environ 2003;1:87–94. https://doi.org/10.1890/1540-9295(2003)001[0087:tcoda]2.0.co;2.
  420. Alford, RA, Bradfield, KS, Richards, SJ. Ecology: global warming and amphibian losses. Nature 2007;447:E3–4. https://doi.org/10.1038/nature05940.
  421. Pounds, AJ, Bustamante, MR, Coloma, LA, Consuegra, JA, Fogden, MPL, Foster, PN, et al.. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006;439:161–7. https://doi.org/10.1038/nature04246.
  422. Reading, CJ. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 2006;151:125–31. https://doi.org/10.1007/s00442-006-0558-1.
  423. Johnson, PTJ, Chase, JM. Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecol Lett 2004;7:521–6. https://doi.org/10.1111/j.1461-0248.2004.00610.x.
  424. Johnson, PTJ, Chase, JM, Dosch, KL, Hartson, RB, Gross, JA, Larson, DJ, et al.. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci Unit States Am 2007;104:15781–6. https://doi.org/10.1073/pnas.0707763104.
  425. Knapp, RA, Matthews, KR. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol 2000;14:428–38. https://doi.org/10.1046/j.1523-1739.2000.99099.x.
  426. Dohm, MR, Muatz, WJ, Andrade, JA, Gellert, KS, Salas-Ferguson, LJ, Nicolaisen, N, et al.. Effects of ozone exposure on nonspecific phagocytic capacity of pulmonary macrophages from an amphibian, Bufo marinus. Environ Toxicol Chem 2009;24:205–10.
  427. Johnson, PTJ, Lunde, KB, Thurman, EM, Ritchie, EG, Wray, SN, Sutherland, DR, et al.. Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the Western United States. Ecol Monogr 2002;72:151–68. https://doi.org/10.1890/0012-9615(2002)072[0151:proilt]2.0.co;2.
  428. Hayes, TB, Collins, A, Lee, M, Mendoza, M, Noriega, N, Stuart, AA, et al.. Hermaphroditic demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci Unit States Am 2002;99:5476–80. https://doi.org/10.1073/pnas.082121499.
  429. Relyea, RA. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 2004;15:618–27.
  430. Relyea, RA. The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol Appl 2005;15:1118–24. https://doi.org/10.1890/04-1291.
  431. Bradley, GA, Rosen, PC, Sredl, MJ, Jones, TR, Longcore, JE. Chytridiomycosis in native Arizona frogs. J Wildl Dis 2002;38:206–12. https://doi.org/10.7589/0090-3558-38.1.206.
  432. Daszak, P, Berger, L, Cunningham, AA, Hyatt, AD, Green, DE, Speare, R. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 1999;5:735–48. https://doi.org/10.3201/eid0506.990601.
  433. Lips, KR, Brem, F, Brenes, R, Reeve, JD, Alford, RA, Voyles, J, et al.. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Nat Acad Sci. USA 2006;103:3165–70. https://doi.org/10.1073/pnas.0506889103.
  434. Trenton, WJG, Perkins, MW, Govindarajulu, P, Seglie, D, Walker, S, Cunningham, AA, et al.. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett 2006;2:455–9. https://doi.org/10.1098/rsbl.2006.0494.
  435. Weldon, C, du Preez, LH, Hyatt, AD, Muller, R, Speare, R. Origin of the amphibian chytrid fungus. Emerg Infect Dis 2004;10:2100–5. https://doi.org/10.3201/eid1012.030804.
  436. Bancroft, BA, Baker, NJ, Blaustein, AR. Effects of UVB radiation on marine and freshwater organisms: a synthesis through meta-analysis. Ecol Lett 2007;10:332–45. https://doi.org/10.1111/j.1461-0248.2007.01022.x.
  437. Belden, LK, Blaustein, AR. Population differences in sensitivity to OV-b radiation for larval long-toed salamanders. Ecology 2002;83:1586–90. https://doi.org/10.1890/0012-9658(2002)083[1586:pdistu]2.0.co;2.
  438. Blaustein, AR, Kiesecker, JM, Chivers, DP, Anthony, RG. Ambient UV-B radiation causes deformities in amphibian embryos. Proc Nat Acad Sci. USA 1995;92:11049–52.
  439. Licht, LE. Shedding light on ultraviolet radiation and amphibian embryos. BioSci 2003;53:551–61. https://doi.org/10.1641/0006-3568(2003)053[0551:sloura]2.0.co;2.
  440. Sun, JWC, Narins, PM. Anthropogenic sounds differentially affect amphibian call rate. Biol Conserv 2005;121:419–27. https://doi.org/10.1016/j.biocon.2004.05.017.
  441. Baker, BJ, Richardson, JML. The effect of artificial light on male breeding-season behaviour in green frogs, Rana clamitans melanota. Can J Zool 2006;84:1528–32. https://doi.org/10.1139/z06-142.
  442. Balmori, A. The incidence of electromagnetic pollution on the amphibian decline: is this an important piece of the puzzle? Toxicol Environ Chem 2006;88:287–99. https://doi.org/10.1080/02772240600687200.
  443. McCallum, ML. Amphibian decline or extinction? current declines dwarf background extinction rate. J Herpetol 2007;41:483–91. https://doi.org/10.1670/0022-1511(2007)41[483:adoecd]2.0.co;2.
  444. Becker, RO, Selden, G. The body electric, electromagnetism and the foundation of life. New York, NY, USA: Quill William Morrow Publisher; 1985:40–67 pp.
  445. Becker, RO. Bioelectric field pattern in the salamander and its simulation by an electronic analog. IRE Trans Med Electron 1960;ME-7:202–6. https://doi.org/10.1109/iret-me.1960.5008048.
  446. Becker, RO. Electromagnetic forces and life processes. Technol Rev 1972;75:32–8.
  447. Becker, RO. Stimulation of partial limb regeneration in rats. Nature 1972;235:109–11. https://doi.org/10.1038/235109a0.
  448. Becker, RO. The basic biological data transmission and control system influenced by electrical forces. Ann NY Acad Sci 1974;238:236–41. https://doi.org/10.1111/j.1749-6632.1974.tb26793.x.
  449. Becker, RO, Murray, DG. A method for producing cellular redifferentiation by means of very small electrical currents. Trans NY Acad Sci Ser II 1967;29:606–15. https://doi.org/10.1111/j.2164-0947.1967.tb02430.x.
  450. Becker, RO, Sparado, JA. Electrical stimulation of partial limb regeneration in mammals. Bull NYAcad Med 1972;48:627–641.
  451. Smith, SD. Effects of electrode placement on stimulation of adult frog limb regeneration. Ann NY Acad Sci 1974;238:500–7. https://doi.org/10.1111/j.1749-6632.1974.tb26816.x.
  452. Lund, EJ. Experimental control of organic polarity by the electric current I. J Exp Zool 1921;34:471–94. https://doi.org/10.1002/jez.1400340308.
  453. Lund, EJ. Experimental control of organic polarity by the electric current III. J Exp Zool 1923;37:69–87. https://doi.org/10.1002/jez.1400370106.
  454. Lund, EJ. Bioelectric fields and growth. Austin, TX, USA: University of Texas Press; 1947.
  455. Burr, HS, Lane, CT. Electrical characteristics of living systems. Yale J Biol Med 1935;8:31–5.
  456. Burr, HS, Northrop, FSC. The electro-dynamic theory of life. Q Rev Biol 1937;10:322–33.
  457. Burr, HS, Northrop, FSC. Evidence for the existence of an electro-dynamic field in living organisms. Proc Natl Acad Sci Unit States Am 1939;25:284–8. https://doi.org/10.1073/pnas.25.6.284.
  458. Burr, HS. Field properties of the developing frog’s egg. Proc Natl Acad Sci Unit States Am 1941;27:267–81. https://doi.org/10.1073/pnas.27.6.276.
  459. Levin, M. Bioelectromagnetics in morphogenesis. Bioelectromagnetics 2003;24:295–315. https://doi.org/10.1002/bem.10104.
  460. Phillips, JB, Jorge, PE, Muheim, R. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 2010;7:S241–56. https://doi.org/10.1098/rsif.2009.0459.focus.
  461. Phillips, JB, Muheim, R, Jorge, PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol 2010;213:3247–55. https://doi.org/10.1242/jeb.020792.
  462. Diego-Rasilla, FJ, Luengo, RM, Phillips, JB. Light-dependent magnetic compass in Iberian green frog tadpoles. Naturwissenschaften 2010;97:1077–88. https://doi.org/10.1007/s00114-010-0730-7.
  463. Diego-Rasilla, FJ, Luengo, RM, Phillips, JB. Use of a light-dependent magnetic compass for y-axis orientation in European common frog (Rana temporaria) tadpoles. J Comp Physiol 2013;199:619–28. https://doi.org/10.1007/s00359-013-0811-0.
  464. Diego-Rasilla, FJ, Phillips, JB. Magnetic compass orientation in larval Iberian green frogs, Pelophylax perezi. Ethology 2007;113:474–9. https://doi.org/10.1111/j.1439-0310.2007.01334.x.
  465. Freake, MJ, Borland, SC, Phillips, JB. Use of a magnetic compass for Y-axis orientation in larval bullfrogs, Rana catesbeiana. Copeia 2002;2002:466–71. https://doi.org/10.1643/0045-8511(2002)002[0466:uoamcf]2.0.co;2.
  466. Freake, MJ, Phillips, JB. Light-dependent shift in bullfrog tadpole magnetic compass orientation: evidence for a common magnetoreception mechanism in anuran and urodele amphibians. Ethology 2005;111:241–54. https://doi.org/10.1111/j.1439-0310.2004.01067.x.
  467. Phillips, JB. Magnetic compass orientation in the Eastern redspotted newt (Notophthalmus viridescens). J Comp Physiol 1986;158:103–9. https://doi.org/10.1007/bf00614524.
  468. Phillips, JB, Borland, SC. Behavioral evidence for the use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 1992;359:142–4. https://doi.org/10.1038/359142a0.
  469. Phillips, JB, Borland, SC. Wavelength-specific effects of light on magnetic compass orientation of the eastern red-spotted newt (Notophthalmus viridescens). Ethol Ecol Evol 1992;4:33–42. https://doi.org/10.1080/08927014.1992.9525348.
  470. Phillips, JB, Deutschlander, ME, Freake, MJ, Borland, SC. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 2001;204:2543–52. https://doi.org/10.1242/jeb.204.14.2543.
  471. Shakhparonov, VV, Ogurtsov, SV. Marsh frogs, Pelophylax ridibundus, determine migratory direction by magnetic field. J Comp Physiol A 2017;203:35–43. https://doi.org/10.1007/s00359-016-1132-x.
  472. Diego-Rasilla, FJ, Pérez-Mellado, V, Pérez-Cembranos, A. Spontaneous magnetic alignment behaviour in free-living lizards. Sci Nat 2017;104:13. https://doi.org/10.1007/s00114-017-1439-7.
  473. Light, P, Salmon, M, Lohmann, KJ. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J Exp Biol 1993;182:1–10. https://doi.org/10.1242/jeb.182.1.1.
  474. Nishimura, T, Okano, H, Tada, H, Nishimura, E, Sugimoto, K, Mohri, K, et al.. Lizards respond to an extremely low-frequency electromagnetic field. J Exp Biol 2010;213:1985–90. https://doi.org/10.1242/jeb.031609.
  475. Nishimura, T, Tada, H, Fukushima, M. Correlation between the lunar phase and tail-lifting behavior of lizards (Pogona vitticeps) exposed to an extremely low-frequency electromagnetic field. Animals 2019;9:208. https://doi.org/10.3390/ani9050208.
  476. Nishimura, T. The parietal eye of lizards (Pogona vitticeps) needs light at a wavelength lower than 580 nm to activate light-dependent magnetoreception. Animals 2020;10:489. https://doi.org/10.3390/ani10030489.
  477. Levitina, NA. Effect of microwaves on the cardiac rhythm of rabbits during local irradiation of body parts. Bull Exp Biol Med 1966. 1964;58:67–9. (Article in Russian).
  478. Frey, AH, Seifert, E. Pulse modulated UHF energy illumination of the heart associated with change in heart rate. Life Sci 1968;7:505–12. https://doi.org/10.1016/0024-3205(68)90068-4.
  479. Miura, M, Okada, J. Non-thermal vasodilatation by radio frequency burst-type electromagnetic field radiation in the frog. J Physiol 1991;435:257–73. https://doi.org/10.1113/jphysiol.1991.sp018509.
  480. Schwartz, JL, House, DE, Mealing, GA. Exposure of frog hearts to CW or amplitude-modulated VHF fields: selective efflux of calcium ions at 16 Hz. Bioelectromagnetics 1990;11:349–58. https://doi.org/10.1002/bem.2250110409.
  481. Balmori, A. The incidence of electromagnetic pollution on wild mammals: a new “poison” with a slow effect on nature? Environmentalist 2010;30:90–7. https://doi.org/10.1007/s10669-009-9248-y.
  482. Grefner, N, Yakovleva, T, Boreisha, I. Effects of electromagnetic radiation on tadpole development in the common frog (Rana temporaria L.). Russ J Ecol 1998;29:133–4.
  483. Mortazavi, SMJ, Rahimi, S, Talebi, A, Soleimani, A, Rafati, A. Survey of the effects of exposure to 900 MHz radiofrequency radiation emitted by a GSM mobile phone on the pattern of muscle contractions in an animal model. J Biomed Phys Eng 2015;5:121–32.
  484. Rafati, A, Rahimi, S, Talebi, A, Soleimani, A, Haghani, M, Mortazavi, SM. Exposure to radiofrequency radiation emitted from common mobile phone jammers alters the pattern of muscle contractions: an animal model study. J Biomed Phys Eng 2015;5:133–42.
  485. Levengood, WC. A new teratogenic agent applied to amphibian embryos. J Embryol Exp Morphol 1969;21:23–31. https://doi.org/10.1242/dev.21.1.23.
  486. Neurath, PW. High gradient magnetic field inhibits embryonic development of frogs. Nature 1968;219:1358. https://doi.org/10.1038/2191358a0.
  487. Ueno, S, Iwasaka, M. Early embryonic development of frogs under intense magnetic fields up to 8 T. J Appl Phys 1994;75:7165–7. https://doi.org/10.1063/1.356716.
  488. Severini, M, Bosco, L, Alilla, R, Loy, M, Bonori, M, Giuliani, L, et al. Metamorphosis delay in Xenopus laevis (Daudin) tadpoles exposed to a 50 Hz weak magnetic field. Int J Radiat Biol 2010;86:37–46.
  489. Severini, M, Bosco, L, Alilla, R, Loy, M, Bonori, M, Giuliani, L, et al.. Metamorphosis delay in Xenopus laevis (Daudin) tadpoles exposed to a 50 Hz weak magnetic field. Int J Radiat Biol 2010;86:37–46. https://doi.org/10.3109/09553000903137687.
  490. Schlegel, PA. Behavioral sensitivity of the European blind cave salamander, Proteus anguinus, and a Pyrenean newt, Euproctus asper, to electrical fields in water. Brain Behav Evol 1997;49:121–31. https://doi.org/10.1159/000112986.
  491. Schelgel, PA, Bulog, B. Population-specific behavioral electrosensitivity of the European blind cave salamander, Proteus anguinus. J Physiol 1997;91:75–9.
  492. Landesman, RH, Douglas, WS. Abnormal limb regeneration in adult newts exposed to a pulsed electromagnetic field. Teratology 1990;42:137–45. https://doi.org/10.1002/tera.1420420205.
  493. Komazaki, S, Takano, K. Induction of increase in intracellular calcium concentration of embryonic cells and acceleration of morphogenetic cell movements during amphibian gastrulation by a 50-Hz magnetic field. J Exp Zool 2007;307A:156–62. https://doi.org/10.1002/jez.a.359.
  494. Fey, DP, Greszkiewicz, M, Otremba, Z, Andrulewicz, E. Effect of static magnetic field on the hatching success, growth, mortality, and yolk-sac absorption of larval Northern pike Esox lucius. Sci Total Environ 2019;647:1239–44. https://doi.org/10.1016/j.scitotenv.2018.07.427.
  495. Fey, DP, Jakubowska, M, Greszkiewicz, M, Andrulewicz, E, Otremba, Z, Urban-Malinga, B. Are magnetic and electromagnetic fields of anthropogenic origin potential threats to early life stages of fish? Aquat Toxicol 2019;209:150–8. https://doi.org/10.1016/j.aquatox.2019.01.023.
  496. Walker, MM, Dennis, TE. Role of the magnetic sense in the distribution and abundance of marine animals. Mar Ecol Prog Ser 2005;287:295–307.
  497. Wiltschko, R, Wiltschko, W. Magnetic orientation in animals. New York, NY, USA: Springer International Publisher; 1995.
  498. Nyqvist, D, Durif, C, Johnsen, MG, De Jong, K, Forland, TN, Sivle, LD. Electric and magnetic senses in marine animals, and potential behavioral effects of electromagnetic surveys. Mar Environ Res 2020;155:104888. https://doi.org/10.1016/j.marenvres.2020.104888.
  499. Putman, NF, Scanlan, MM, Billman, EJ, O’Neil, JP, Couture, RB, Quinn, TP, et al.. An inherited magnetic map guides ocean navigation in juvenile pacific salmon. Curr Biol 2014;24:446–50. https://doi.org/10.1016/j.cub.2014.01.017.
  500. Josberger, E, Hassanzadeh, P, Deng, Y, Sohn, J, Rego, M, Amemiya, C, et al.. Proton conductivity in ampullae of Lorenzini jelly. Sci Adv 2016;2:e1600112. https://doi.org/10.1126/sciadv.1600112.
  501. Lorenzini, S. Osservazioni Intorno Alle Torpedini. Firenze: Per l’Onofri; 1678.
  502. Murray, RW. The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 1962;39:119–28. https://doi.org/10.1242/jeb.39.1.119.
  503. Brown, BR, Hutchison, JC, Hughes, ME, Kellogg, DR, Murray, RW. Electrical characterization of gel collected from shark electrosensors. Phys Rev E - Stat Nonlinear Soft Matter Phys 2002;65:061903. https://doi.org/10.1103/physreve.65.061903.
  504. Camperi, M, Tricas, TC, Brown, BR. From morphology to neural information: the electric sense of the skate. PLoS Comput Biol 2007;3:e113. https://doi.org/10.1371/journal.pcbi.0030113.
  505. Fields, RD. The shark’s electric sense. Sci Am 2007;297:74–81. https://doi.org/10.1038/scientificamerican0807-74.
  506. Fields, RD, Fields, KD, Fields, MC. Semiconductor gel in shark sense organs? Neurosci Lett 2007;426:166–70. https://doi.org/10.1016/j.neulet.2007.08.064.
  507. Sperelakis, N. Cell physiology sourcebook: essentials of membrane biophysics, 4th ed. Amsterdam, Netherlands: Elsevier/AP; 2012:970 p. part. xxvi.
  508. Waltman, B. Electrical properties and fine structure of the ampullary canals of Lorenzini. Acta Physiol Scand Suppl 1966;264:1–60. https://doi.org/10.1111/j.1748-1716.1966.tb03476.x.
  509. Brown, BR. Neurophysiology: sensing temperature without ion channels. Nature 2003;421:495.
  510. Brown, BR. Temperature response in electrosensors and thermal voltages in electrolytes. J Biol Phys 2010;36:121–34. https://doi.org/10.1007/s10867-009-9174-8.
  511. Kirschvink, JL, MacFadden, BJ, Jones, DS. Magnetite biomineralization and magnetoreception in organisms. New York, NY, USA: Plenum Press; 1985.
  512. Kremers, D, Marulanda, JL, Hausberger, M, Lemasson, A. Behavioural evidence of magnetoreception in dolphins: detection of experimental magnetic fields. Naturwissenschaften 2014;101:907–11. https://doi.org/10.1007/s00114-014-1231-x.
  513. Walker, MM, Kirschvink, JL, Ahmed, G, Diction, AE. Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 1992;171:67–78. https://doi.org/10.1242/jeb.171.1.67.
  514. Bauer, GB, Fuller, M, Perry, A, Dunn, JR, Zoeger, J. Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirschvink, JL, Jones, DS, MacFadden, BJ, editors. Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism. New York, NY, USA: Plenum Press; 1985:489–507 pp. https://doi.org/10.1007/978-1-4613-0313-8_24.
  515. Zoeger, J, Dunn, JR, Fuller, M. Magnetic material in the head of the common Pacific dolphin. Science 1981;213:892–4. https://doi.org/10.1126/science.7256282.
  516. Klinowska, M. Cetacean live stranding sites relate to geomagnetic topography. Aquat Mamm 1985;1:27–32.
  517. Kirschvink, JL, Dizon, AE, Westphal, JA. Evidence from strandings for geomagnetic sensitivity in cetaceans. J Exp Biol 1986;120:1–24. https://doi.org/10.1242/jeb.120.1.1.
  518. Granger, J, Walkowicz, L, Fitak, R, Johnsen, S. Gray whales strand more often on days with increased levels of atmospheric radio-frequency noise. Curr Biol 2020;30:R135–58. https://doi.org/10.1016/j.cub.2020.01.028.
  519. Ferrari, TE. Cetacean beachings correlate with geomagnetic disturbances in earth’s magnetosphere: an example of how astronomical changes impact the future of life. Int J Astrobiol 2017;16:163–75. https://doi.org/10.1017/s1473550416000252.
  520. Vanselow, KH, Jacobsen, S, Hall, C, Garthe, S. Solar storms may trigger sperm whale strandings: explanation approaches for multiple strandings in the North Sea in 2016. Int J Astrobiol 2017;17:336–44. https://doi.org/10.1017/s147355041700026x.
  521. Stafne, GM, Manger, PR. Predominance of clockwise swimming during rest in southern hemisphere dolphins. Physiol Behav 2004;82:919–26. https://doi.org/10.1016/s0031-9384(04)00326-9.
  522. Putman, NF, Lohmann, KJ, Putman, EM, Quinn, TP, Klimley, AP, Noakes, DLG. Evidence for geomagnetic imprinting as a homing mechanism for Pacific salmon. Curr Biol 2013;23:312–16. https://doi.org/10.1016/j.cub.2012.12.041.
  523. Putman, NF, Williams, CR, Gallagher, EP, Dittman, AH. A sense of place: pink salmon use a magnetic map for orientation. J Exp Biol 2020;223:218735. https://doi.org/10.1242/jeb.218735.
  524. Kirschvink, JL, Walker, MM, Chang, SB, Dizon, AE, Peterson, KA. Chains of single domain magnetite particles in chinook salmon. Oncorhynchus tshawytscha. J Comp Physiol 1985;157:375–81. https://doi.org/10.1007/bf00618127.
  525. Naisbett-Jones, LC, Putman, NF, Scanlan, MM, Noakes, DL, Lohmann, KJ. Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon. J Exp Biol 2020;223:jeb222091. https://doi.org/10.1242/jeb.222091.
  526. Royce, WF, Smith, LS, Hartt, AC. Models of oceanic migrations of Pacific salmon and comments on guidance mechanisms. Fish Bull 1968;66:441–62.
  527. Quinn, TP. Evidence for celestial and magnetic compass orientation in lake migratory Sockeye salmon frey. J Comp Physiol 1980;137:243–8. https://doi.org/10.1007/bf00657119.
  528. Klimley, AP. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 1993;117:1–22. https://doi.org/10.1007/bf00346421.
  529. Ardelean, M, Minnebo, P. HVDC submarine power cables in the world. state-of-the-art knowledge. EUR 27527 EN 2015.
  530. Öhman, MC, Sigray, P, Westerberg, H. Offshore windmills and the effects of electromagnetic fields on fish. Ambio 2007;36:630–3. https://doi.org/10.1579/0044-7447(2007)36[630:owateo]2.0.co;2.
  531. Hutchison, ZL, Sigray, P, He, H, Gill, AB, King, J, Gibson, C. Electromagnetic field (EMF) impacts on Elasmobranch (shark, rays, and skates) and American lobster movement and migration from direct current cables. Sterling (VA): U.S. Department of the Interior, Bureau of Ocean Energy Management. OCS Study BOEM; 2018.
  532. Fey, DP, Greszkiewicz, M, Jakubowska, M, Lejk, AM, Otremba, Z, Andrulewicz, E, et al.. Otolith fluctuating asymmetry in larval trout, Oncorhynchus mykiss Walbaum, as an indication of organism bilateral instability affected by static and alternating magnetic fields. Sci Total Environ 2020;707:135489. https://doi.org/10.1016/j.scitotenv.2019.135489.
  533. Li, Y, Liu, X, Liu, K, Miao, W, Zhou, C, Li, Y, et al.. Extremely low-frequency magnetic fields induce developmental toxicity and apoptosis in Zebrafish (Danio rerio) embryos. Biol Trace Elem Res 2014;162:324–32. https://doi.org/10.1007/s12011-014-0130-5.
  534. Sedigh, E, Heidari, B, Roozati, A, Valipour, A. The Effect of different intensities of static magnetic field on stress and selected reproductive indices of the Zebrafish (Danio rerio) during acute and subacute exposure. Bull Environ Contam Toxicol 2019;102:204–9. https://doi.org/10.1007/s00128-018-02538-1.
  535. Hunt, RD, Ashbaugh, RC, Reimers, M, Udpa, L, Saldana De Jimenez, G, Moore, M, et al.. Swimming direction of the glass catfish is responsive to magnetic stimulation. PloS One 2021;16:e0248141. https://doi.org/10.1371/journal.pone.0248141.
  536. Boles, LC, Lohmann, KJ. True navigation and magnetic maps in spiny lobsters. Nature 2003;421:60–3. https://doi.org/10.1038/nature01226.
  537. Taormina, B, Di Poic, C, Agnaltd, A-L, Carlierb, A, Desroye, N, Escobar-Luxf, RH, et al.. Impact of magnetic fields generated by AC/DC submarine power cables on the behavior of juvenile European lobster (Homarus gammarus). Aquat Toxicol 2020;220:105401. https://doi.org/10.1016/j.aquatox.2019.105401.
  538. Scott, K, Harsanyia, P, Lyndon, AR. Understanding the effects of electromagnetic field emissions from Marine Renewable Energy Devices (MREDs) on the commercially important edible crab. Cancer pagurus (L.). Mar Pollut Bull 2018;131:580–8. https://doi.org/10.1016/j.marpolbul.2018.04.062.
  539. Nirwane, A, Sridhar, V, Majumdar, A. Neurobehavioural changes and brain oxidative stress induced by acute exposure to GSM 900 mobile phone radiations in Zebrafish (Danio rerio). Toxicol Res 2016;32:123–32. https://doi.org/10.5487/tr.2016.32.2.123.
  540. Piccinetti, CC, De Leo, A, Cosoli, G, Scalise, L, Randazzo, B, Cerri, G, et al.. Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: a multidisciplinary study. Ecotoxicol Environ Saf 2018;154:268–79. https://doi.org/10.1016/j.ecoenv.2018.02.053.
  541. Dasgupta, S, Wang, G, Simonich, MT, Zhang, T, Truong, L, Liu, H, et al.. Impacts of high dose 3.5 GHz cellphone radiofrequency on zebrafish embryonic development. PloS One 2020;15:e0235869. https://doi.org/10.1371/journal.pone.0235869.
  542. Putman, NF, Endres, CS, Lohmann, CMF. Lohmann KJ Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol 2011;21:463–6. https://doi.org/10.1016/j.cub.2011.01.057.
  543. Putman, NF, VerleyP, Shay, TJ, Lohmann, KJ. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model. J Exp Biol 2012;215:1863–70. https://doi.org/10.1242/jeb.067587.
  544. Mathis, A, Moore, FR. Geomagnetism and the homeward orientation of the box turtle, Terrapene carolina. Ethology 1988;78:265–74.
  545. Lohmann, KJ, Lohmann, CMF, Brothers, JR, Putman, NF. Natal homing and imprinting in sea turtles. In: Wyneken, J, Lohmann, KJ, Musick, JA, editors. The biology of sea turtles. Boca Raton, Florida, USA: CRC Press; 2013, vol 3:59–77 pp. https://doi.org/10.1201/b13895-4.
  546. Lohmann, KJ. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 1991;155:37–49. https://doi.org/10.1242/jeb.155.1.37.
  547. Lohmann, CMF, Lohmann, KJ. Orientation to oceanic waves by green turtle hatchlings. J Exp Biol 1992;171:1–13. https://doi.org/10.1242/jeb.171.1.1.
  548. Lohmann, KJ, Lohmann, CMF. A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 1993;185:149–51. https://doi.org/10.2307/1542138.
  549. Lohmann, KJ, Lohmann, CMF. Acquisition of magnetic directional preference in hatchling loggerhead sea turtles. J Exp Biol 1994;190:1–8. https://doi.org/10.1242/jeb.190.1.1.
  550. Lohmann, KJ, Lohmann, CMF. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J Exp Biol 1994;194:23–32. https://doi.org/10.1242/jeb.194.1.23.
  551. Lohmann, KJ, Lohmann, CMF. Detection of magnetic field intensity by sea turtles. Nature 1996;380:59–61. https://doi.org/10.1038/380059a0.
  552. Lohmann, KJ, Lohmann, CMF. Orientation and open-sea navigation in sea turtles. J Exp Biol 1996;199:73–81. https://doi.org/10.1242/jeb.199.1.73.
  553. Lohmann, KJ, Lohmann, CMF. Migratory guidance mechanisms in marine turtles. J Avian Biol 1998;29:585–96. https://doi.org/10.2307/3677179.
  554. Lohmann, KJ, Lohmann, CMF. Orientation mechanisms of hatchling loggerheads. In: Bolten, A, Witherington, B, editors. Loggerhead sea turtles. Washington, DC, USA: Smithsonian Institution Press; 2003:44–62 pp.
  555. Lohmann, KJ, Swartz, AW, Lohmann, CMF. Perception of ocean wave direction by sea turtles. J Exp Biol 1995;198:1079–85. https://doi.org/10.1242/jeb.198.5.1079.
  556. Lohmann, KJ, Witherington, BE, Lohmann, CMF, Salmon, M. Orientation, navigation, and natal beach homing in sea turtles. In: Lutz, P, Musick, J, editors. The biology of sea turtles. Boca Raton, FL, USA: CRC Press; 1997:107–35 pp.
  557. Lohmann, KJ, Cain, SD, Dodge, SA, Lohmann, CMF. Regional magnetic fields as navigational markers for sea turtles. Science 2001;294:364–6. https://doi.org/10.1126/science.1064557.
  558. Lohmann, KJ, Johnsen, S. The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci 2000;24:153–9. https://doi.org/10.1016/s0166-2236(99)01542-8.
  559. Irwin, WP, Lohmann, KL. Magnet-induced disorientation in hatchling loggerhead sea turtles. J Exp Biol 2003;206:497–501. https://doi.org/10.1242/jeb.00108.
  560. Merritt, R, Purcell, C, Stroink, G. Uniform magnetic field produced by three, four, and five square coils. Rev Sci Instrum 1983;54:879–82. https://doi.org/10.1063/1.1137480.
  561. Keeton, WT. Magnets interfere with pigeon homing. Proc Natl Acad Sci Unit States Am 1971;68:102–6. https://doi.org/10.1073/pnas.68.1.102.
  562. Haugh, CV, Davison, M, Wild, M, Walker, MM. P-gps (pigeon geomagnetic positioning system): I. Conditioning analysis of magnetoreception and its mechanism in the homing pigeon (Columbia livia). In: RIN 01. Oxford, UK: Royal Institute of Navigation; 2001. Paper No. 7.
  563. Luschi, P, Benhamou, S, Girard, C, Ciccione, S, Roos, D, Sudre, J, et al.. Marine turtles use geomagnetic cues during open-sea homing. Curr Biol 2007;17:126–33. https://doi.org/10.1016/j.cub.2006.11.062.
  564. Papi, F, Luschi, P, Akesson, S, Capogrossi, S, Hays, GC. Open-sea migration of magnetically disturbed sea turtles. J Exp Biol 2000;203:3435–43. https://doi.org/10.1242/jeb.203.22.3435.
  565. Sinsch, U. Orientation behavior of toads (Bufo bufo) displaced from the breeding site. J Comp Physiol 1987;161:715–27. https://doi.org/10.1007/bf00605013.
  566. WiltschkoW, WR. Magnetic compass of European robins. Science 1972;176:62–4. https://doi.org/10.1126/science.176.4030.62.
  567. Wiltschko, W, Wiltschko, R. Magnetic orientation in birds. Curr Ornithol 1988;5:67–121. https://doi.org/10.1007/978-1-4615-6787-5_2.
  568. Wiltschko, W, Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol 2005;191A:675–93. https://doi.org/10.1007/s00359-005-0627-7.
  569. Fuxjager, MJ, Eastwood, BS, Lohmann, KJ. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J Exp Biol 2011;214:2504–8. https://doi.org/10.1242/jeb.055921.
  570. Collett, TS, Collett, M. Animal navigation: following signposts in the sea. Curr Biol 2011;21:R843–6. https://doi.org/10.1016/j.cub.2011.09.002.
  571. Gould, JL. Animal navigation: longitude at last. Curr Biol 2011;21:R225–7. https://doi.org/10.1016/j.cub.2011.01.063.
  572. Merrill, MW, Salmon, M. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico. Mar Biol 2010;158:101–12. https://doi.org/10.1007/s00227-010-1545-y.
  573. Maniere, X, Lebois, F, Matic, I, Ladoux, B, Di Meglio, J-M, Hersen, P. Running worms: C. elegans self-sorting by electrotaxis. PloS One 2011;6:e16637. https://doi.org/10.1371/journal.pone.0016637.
  574. Hung, Y-C, Lee, J-H, Chen, H-M, Huang, GS. Effects of static magnetic fields on the development and aging of Caenorhabditis elegans. J Exp Biol 2010;213:2079–85. https://doi.org/10.1242/jeb.039768.
  575. Sukul, NC, Croll, NA. Influence of potential difference and current on the electrotaxis of Caenorhaditis elegans. J Nematol 1978;10:314–17.
  576. Gabel, CV, Gabel, H, Pavlichin, D, Kao, A, Clark, DA, Samuel, ADT. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J Neurosci 2007;27:7586–96. https://doi.org/10.1523/jneurosci.0775-07.2007.
  577. Daniells, C, Duce, I, Thomas, D, Sewell, P, Tattersall, J, de Pomerai, D. Transgenic nematodes as biomonitors of microwave-induced stress. Mutat Res 1998;399:55–64. https://doi.org/10.1016/s0027-5107(97)00266-2.
  578. Tkalec, M, Stambuk, A, Srut, M, Malarić, K, Klobučar, GI. Oxidative and genotoxic effects of 900 MHz electromagnetic fields in the earthworm Eisenia fetida. Ecotoxicol Environ Saf 2013;90:7–12. https://doi.org/10.1016/j.ecoenv.2012.12.005.
  579. Jakubowska, M, Urban-Malinga, B, Otremba, Z, Andrulewicz, E. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hediste diversicolor. Mar Environ Res 2019;150:104766. https://doi.org/10.1016/j.marenvres.2019.104766.
  580. Hanslik, KL, Allen, SR, Harkenrider, TL, Fogerson, SM, Guadarrama, E, Morgan, JR. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PloS One 2019;14:e0204193. https://doi.org/10.1371/journal.pone.0204193.
  581. Nittby, H, Moghadam, MK, Sun, W, Malmgren, L, Eberhardt, J, Persson, BR, et al.. Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia. Int J Radiat Biol 2011;88:245–52. https://doi.org/10.3109/09553002.2012.644257.
  582. Goodman, EM, Greenbaum, B, Marron, MT. Effects of extremely low frequency electromagnetic fields on Physarum polycephalum. Radiat Res 1976;66:531–40. https://doi.org/10.2307/3574457.
  583. Friend, AW, Finch, ED, Schwan, HP. Low frequency electric field induced changes in the shape and motility of amoebas. Science 1975;187:357–9. https://doi.org/10.1126/science.1111109.
  584. Marron, MT, Goodman, EM, Greenebaum, B, Tipnis, P. Effects of sinusoidal 60-Hz electric and magnetic fields on ATP and oxygen levels in the slime mold, Physarum polycephalum. Bioelectromagnetics 1986;7:307–14. https://doi.org/10.1002/bem.2250070307.
  585. Luchian, A-M, Lungulescu, E-M, Voina, A, Mateescu, C, Nicula, N, Patroi, E. Evaluation of the magnetic field effect of 5-10 mT on Chlorella sorokiniana microalgae. Electroteh Electron Autom 2017;65:123–7.
  586. Rodriguez-de la Fuente, AO, Gomez-Flores, R, Heredia-Rojas, JA, Garcia-Munoz, EM, Vargas-Villarreal, J, Hernandez-Garcia, ME, et al.. Trichomonas vaginalis and Giardia lamblia growth alterations by low-frequency electromagnetic fields. Iran J Parasitol 2019;14:652–6.
  587. Cammaerts, MC, Debeir, O, Cammaerts, R. Changes in Paramecium caudatum (Protozoa) near a switched-on GSM telephone. Electromagn Biol Med 2011;30:57–66. https://doi.org/10.3109/15368378.2011.566778.
  588. Botstein, D, Fink, GR. Yeast: an experimental organism for 21st century biology. Genetics 2011;189:695–704. https://doi.org/10.1534/genetics.111.130765.
  589. Lin, KW, Yang, CJ, Lian, HY, Cai, P. Exposure of ELF-EMF and RF-EMF increase the rate of glucose transport and TCA cycle in budding yeast. Front Microbiol 2016;7:1378. https://doi.org/10.3389/fmicb.2016.01378.
  590. Mercado-Sáenz, S, Burgos-Molina, AM, López-Díaz, B, Sendra-Portero, F, Ruiz-Gómez, MJ. Effect of sinusoidal and pulsed magnetic field exposure on the chronological aging and cellular stability of S. cerevisiae. Int J Radiat Biol 2019;95:1588–96. https://doi.org/10.1080/09553002.2019.1643050.
  591. Wang, J, Bai, Z, Xiao, K, Li, X, Liua, Q, Liua, X, et al.. Effect of static magnetic field on mold corrosion of printed circuit boards. Bioelectrochemistry 2020;131:107394. https://doi.org/10.1016/j.bioelechem.2019.107394.
  592. Sun, L, Li, X, Ma, H, He, R, Donkor, PO. Global gene expression changes reflecting pleiotropic effects of Irpex lacteus induced by low-intensity electromagnetic field. Bioelectromagnetics 2019;40:104–17. https://doi.org/10.1002/bem.22171.
  593. Buzina, W, Lass-Florl, C, Kropshofer, G, Freund, MC, Marth, E. The polypore mushroom Irpex lacteus, a new causative agent of fungal infections. J Clin Microbiol 2005;43:2009–2011. https://doi.org/10.1128/JCM.43.4.2009-2011.2005.
  594. Sztafrowski, D, Suchodolski, J, Muraszko, J, Sigler, K, Krasowska, A. The influence of N and S poles of static magnetic field (SMF) on Candida albicans hyphal formation and antifungal activity of amphotericin B. Folia Microbiol 2019;64:727–34. https://doi.org/10.1007/s12223-019-00686-3.
  595. Mah, TF, O’Toole, GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9:34–9. https://doi.org/10.1016/s0966-842x(00)01913-2.
  596. Pfaller, MA. Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 1996;22:S89–94. https://doi.org/10.1093/clinids/22.supplement_2.s89.
  597. Martel, CM, Parker, JE, Bader, O, Weig, M, Gross, U, Warrilow, AGS, et al.. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14α-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 2010;54:3578–83. https://doi.org/10.1128/aac.00303-10.
  598. Novickij, V, Staigvila, G, Gudiukaitė, R, Zinkevičienė, A, Girkontaitė, I, Paškevičius, A, et al.. Nanosecond duration pulsed electric field together with formic acid triggers caspase-dependent apoptosis in pathogenic yeasts. Bioelectrochemistry 2019;128:148–54. https://doi.org/10.1016/j.bioelechem.2019.04.007.
  599. Choe, M, Choe, W, Cha, S, Lee, I. Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments. J Biol Phys 2018;44:433–48. https://doi.org/10.1007/s10867-018-9500-0.
  600. Lian, HY, Lin, KW, Yang, C, Cai, P. Generation and propagation of yeast prion [URE3] are elevated under electromagnetic field. Cell Stress Chaperones 2018;23:581–94. https://doi.org/10.1007/s12192-017-0867-9.
  601. Zimmer, C. Wired bacteria form nature’s power grid: We have an electric planet, electroactive bacteria were running current through “wires” long before humans learned the trick. New York Times, Science July 1, 2019. Available from: https://www.nytimes.com/2019/07/01/science/bacteria-microbes-electricity.html.
  602. Nyrop, JE. A specific effect of high-frequency electic currents on biological objects. Nature 1946;157:51. https://doi.org/10.1038/157051a0.
  603. Chung, HJ, Bang, W, Drake, MA. Stress response of Escherichia coli. Compr Rev Food Sci Food Saf 2006;5:52–64. https://doi.org/10.1111/j.1541-4337.2006.00002.x.
  604. Salmen, SH. Non-thermal biological effects of electromagnetic field on bacteria-a review. Am J Res Commun 2016;4:16–28.
  605. Salmen, SH, Alharbi, SA, Faden, AA, Wainwright, M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci 2018;25:105–10. https://doi.org/10.1016/j.sjbs.2017.07.006.
  606. Mohd-Zain, Z, Mohd-Ismai, M, Buniyamin, N. Effects of mobile phone generated high frequency electromagnetic field on the viability and biofilm formation of Staphylococcus aureus. World Acad Sci Eng Technol 2012;70:221–4.
  607. Nakouti, I, Hobbs, G, Teethaisong, Y, Phipps, D. A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1. Biotechnol Prog 2017;33:37–44. https://doi.org/10.1002/btpr.2392.
  608. Segatore, B, Setacci, D, Bennato, F, Cardigno, R, Amicosante, G, Iorio, R. Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Internet J Microbiol 2012;2012:587293. https://doi.org/10.1155/2012/587293.
  609. Taheri, M, Mortazavi, S, Moradi, M, Mansouri, S, Nouri, F, Mortazavi, SAR, et al.. Klebsiella pneumonia, a microorganism that approves the non-linear responses to antibiotics and window theory after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. J Biomed Phys Eng 2015;5:115.
  610. Taheri, M, Mortazavi, SM, Moradi, M, Mansouri, S, Hatam, GR, Nouri, F. Evaluation of the effect of radiofrequency radiation emitted from Wi-Fi router and mobile phone simulator on the antibacterial susceptibility of pathogenic bacteria Listeria monocytogenes and Escherichia coli. Dose Resp 2017;15. https://doi.org/10.1177/1559325816688527.
  611. Cellini, L, Grande, R, Di Campli, E, Di Bartolomeo, S, Di Giulio, M, Robuffo, I, et al.. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 2008;29:302–11. https://doi.org/10.1002/bem.20391.
  612. Crabtree, DPE, Herrera, BJ, Sanghoon Kang, S. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field. J Microbiol 2017;55:809–15. https://doi.org/10.1007/s12275-017-7208-7.
  613. Mortazavi, SMJ, Motamedifar, M, Mehdizadeh, AR, Namdari, G, Taheri, M. The effect of pre-exposure to radiofrequency radiations emitted from a GSM mobile phone on the susceptibility of BALB/c mice to Escherichia coli. J Biomed Phys Eng 2012;2:139–46.
  614. Said-Salman, IH, Jebaii, FA, Yusef, HH, Moustafa, ME. Evaluation of wi-fi radiation effects on antibiotic susceptibility, metabolic activity and biofilm formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis. J Biomed Phys Eng 2019;9:579–86. https://doi.org/10.1038/s41598-019-51046-7.
  615. Movahedi, MM, Nouri, F, Tavakoli Golpaygani, A, Ataee, L, Amani, S, Taheri, M. Antibacterial susceptibility pattern of the Pseudomonas aeruginosa and Staphylococcus aureus after exposure to electromagnetic waves emitted from mobile phone simulator. J Biomed Phys Eng 2019;9:637–46. https://doi.org/10.31661/jbpe.v0i0.1107.
  616. Sharma, AB, Lamba, OS, Sharma, L, Sharma, A. Effect of mobile tower radiation on microbial diversity in soil and antibiotic resistance. In: International Conference on Power Energy, Environment and Intelligent Control (PEEIC). India: G. L. Bajaj Inst. of Technology and Management Greater Noida, U. P.; 2018. https://doi.org/10.1109/PEEIC.2018.8665432.
  617. Potenza, L, Ubaldi, L, De Sanctis, R, De Bellis, R, Cucchiarini, L, Dachà, M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 2004;561:53–62. https://doi.org/10.1016/j.mrgentox.2004.03.009.
  618. Zaporozhan, V, Ponomarenko, A. Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. Int J Environ Res Publ Health 2010;7:938–65. https://doi.org/10.3390/ijerph7030938.
  619. Ertel, S. Influenza pandemics and sunspots—easing the controversy. Naturwissenschaften 1994;8:308–11. https://doi.org/10.1007/s001140050075.
  620. Hope-Simpson, RE. Sunspots and flu: a correlation. Nature 1978;275:86. https://doi.org/10.1038/275086a0.
  621. Yeung, JW. A hypothesis: sunspot cycles may detect pandemic influenza A in 1700−2000 A.D. Med Hypotheses 2006;67:1016–22. https://doi.org/10.1016/j.mehy.2006.03.048.
  622. Galland, P, Pazur, A. Magnetoreception in plants. J Plant Res 2005;118:371–89. https://doi.org/10.1007/s10265-005-0246-y.
  623. Czerwińskia, M, Januszkiewicz, L, Vian, A, Lázaro, A. The influence of bioactive mobile telephony radiation at the level of a plant community – possible mechanisms and indicators of the effects. Ecol Indicat 2020;108:105683.
  624. Wohlleben, P. The hidden life of trees, what they feel, how they communicate? Vancouver, BC, Canada: Greystone Books; 2015. p. 8–12.
  625. Gagliano, M, Mancuso, S, Robert, D. Toward understanding plant bioacoustics. Trends Plant Sci 2012;17:323–5. https://doi.org/10.1016/j.tplants.2012.03.002.
  626. Oskin, B. Sound garden: can plants actually talk and hear? LiveScience; 2013. Available from: https://www.livescience.com/27802-plants-trees-talk-with-sound.html .
  627. Halgamuge, MN. Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagn Biol Med 2017;36:213–35. https://doi.org/10.1080/15368378.2016.1220389.
  628. Volkrodt, W. Are microwaves faced with a fiasco similar to that experienced by nuclear energy? Wetter-Boden-Mensch. Germany: Waldbrunn-Wk; 1991.
  629. Kasevich, RS. Brief overview of the effects of electromagnetic fields on the environment. In: Levitt, BB, editor. Cell Towers, Wireless Convenience or Environmental Hazards? Proceedings of the “Cell Towers Forum” State of the Science/State of the Law. Bloomington, IN: iUniverse edition; 2011:170–5.
  630. Vashisth, A, Nagarajan, S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol 2010;167:149–56. https://doi.org/10.1016/j.jplph.2009.08.011.
  631. Mild, KH, Greenebaum, B. Environmentally and occupationally encountered electromagnetic fields. In: Barnes, FS, Greenebaum, B, editors. Bioengineering and biophysical aspects of electromagnetic fields. Boca Raten, FL, USA: CRC Press; 2007:440 p.
  632. Burr, HS. Blueprint for immortality, the electric patterns of life. Saffron Walden, UK: C.W. Daniel Company Ltd.; 1972.
  633. Chen, YB, Li, J, Liu, JY, Zeng, LH, Wan, Y, Li, YR, et al.. Effect of electromagnetic pulses (EMP) on associative learning in mice and a preliminary study of mechanism. Int J Radiat Biol 2011;87:1147–54. https://doi.org/10.3109/09553002.2011.584937.
  634. Huss, A, Egger, M, Hug, K, Huwiler-Müntener, K, Röösli, M. Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Environ Health Perspect 2007;115:1–4. https://doi.org/10.1289/ehp.9149.
  635. Geddes, P. The life and work of Sir Jadadis C. London, UK: Bose. Publisher: Longmans, Green and Co.; 1920.
  636. Emerson, DT. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Trans Microw Theor Tech 1997;45:2267–73. https://doi.org/10.1109/22.643830.
  637. Markson, R. Tree potentials and external factors. In: HS Burr, S Walden, editor. Blueprint for immortality, the electric patterns of life. UK: C.W. Daniel Company Ltd.; 1972:166–84 pp.
  638. Balodis, V, Brumelis, G, Kalviskis, K, Nikodemus, O, Tjarve, D, Znotiga, V. Does the Skrunda Radio Location Station diminish the radial growth of pine trees? Sci Total Environ 1996;180:57–64. https://doi.org/10.1016/0048-9697(95)04920-7.
  639. Hajnorouzi, A, Vaezzadeh, M, Ghanati, F, Jamnezhad, H, Nahidian, B. Growth promotion and a decrease of oxidative stress in maize seedlings by a combination of geomagnetic and weak electromagnetic fields. J Plant Physiol 2011;168:1123–8. https://doi.org/10.1016/j.jplph.2010.12.003.
  640. Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol Mol Biol Plants 2019;25:1107–19. https://doi.org/10.1007/s12298-019-00699-9.
  641. Vian, A, Roux, D, Girard, S, Bonnet, P, Paladian, F, Davies, E, et al.. Microwave irradiation affects gene expression in plants. Plant Signal Behav 2006;1:67–70. https://doi.org/10.4161/psb.1.2.2434.
  642. Vian, A, Davies, E, Gendraud, M, Bonnet, P. Plant responses to high frequency electromagnetic fields. BioMed Res Int 2016;2016:1830262. https://doi.org/10.1155/2016/1830262.
  643. Evered, C, Majevadia, B, Thompson, DS. Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower (Helianthus annuus L.). J Exp Bot 2007;58:3361–71. https://doi.org/10.1093/jxb/erm183.
  644. Belyavskaya, NA. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields. Adv Space Res 2001;28:445–50. https://doi.org/10.1016/s0273-1177(01)00373-8.
  645. Kumar, A, Kaur, S, Chandel, S, Singh, HP, Batish, DR, Kohli, RK. Comparative cyto- and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa. Ecotoxicol Environ Saf 2020;188:109786m. https://doi.org/10.1016/j.ecoenv.2019.109786.
  646. Chandel, S, Kaur, S, Issa, M, Singh, HP, Batish, DR, Kohli, RK. Appraisal of immediate and late effects of mobile phone radiations at 2100 MHz on mitotic activity and DNA integrity in root meristems of Allium cepa. Protoplasma 2019;256:1399–407. https://doi.org/10.1007/s00709-019-01386-y.
  647. Stefi, AL, Margaritis, LH, Christodoulakis, NS. The effect of the non-ionizing radiation on cultivated plants of Arabidopsis thaliana (Col.). Flora 2016;223:114–20. https://doi.org/10.1016/j.flora.2016.05.008.
  648. Stefi, AL, Margaritis, LH, Christodoulakis, NS. The aftermath of long-term exposure to non-ionizing radiation on laboratory cultivated pine plants (Pinus halepensis M.). Flora 2017;234:173–86. https://doi.org/10.1016/j.flora.2017.07.016.
  649. Stefi, AL, Margaritis, LH, Christodoulakis, NS. The effect of the non- ionizing radiation on exposed, laboratory cultivated upland cotton (Gossypium hirsutum L.) plants. Flora 2017;226:55–64. https://doi.org/10.1016/j.flora.2016.11.009.
  650. Stefi, AL, Margaritis, LH, Christodoulakis, NS. The effect of the non-ionizing radiation on exposed, laboratory cultivated maize (Zea mays L.) plants. Flora 2017;233:22–30. https://doi.org/10.1016/j.flora.2017.05.008.
  651. Kumar, A, Singh, HP, Batish, DR, Kaur, S, Kohli, RK. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma 2015;253:1043–9. https://doi.org/10.1007/s00709-015-0863-9.
  652. Jayasanka, SMDH, Asaeda, T. The significance of microwaves in the environment and its effect on plants. Environ Rev 2014;22:220–8. https://doi.org/10.1139/er-2013-0061.
  653. Waldman-Selsam, C, Balmori-de la Puente, A, Helmut Breunig, H, Balmori, A. Radiofrequency radiation injures trees around mobile phone base stations. Sci Total Environ 2016;572:554–69.
  654. Tanner, JA, Romero-Sierra, C. Biological effects of nonionizing radiation: an outline of fundamental laws. Ann N Y Acad Sci 1974;238:263–72. https://doi.org/10.1111/j.1749-6632.1974.tb26795.x.
  655. Scialabba, A, Tamburello, C. Microwave effects on germination and growth of radish (Raphanus sativus L.) seedlings. Acta Bot Gall 2002;149:113–23. https://doi.org/10.1080/12538078.2002.10515947.
  656. Tafforeau, M, Verdus, MC, Norris, V, White, GJ, Cole, M, Demarty, M, et al.. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 2004;25:403–7. https://doi.org/10.1002/bem.10205.
  657. Ragha, L, Mishra, S, Ramachandran, V, Bhatia, MS. Effects of low-power microwave fields on seed germination and growth rate. J Electromagn Anal Appl 2011;3:165–71. https://doi.org/10.4236/jemaa.2011.35027.
  658. Jovičić-Petrović, J, Karličić, V, Petrović, I, Ćirković, S, Ristić-Djurović, JL, Raičević, V. Biomagnetic priming—possible strategy to revitalize old mustard seeds. Bioelectromagnetics 2021;42:238–49. https://doi.org/10.1002/bem.22328.
  659. Klink, A, Polechonska, L, Dambiec, M, Bienkowski, P, Klink, J, Salamacha, Z. The influence of an electric field on growth and trace metal content in aquatic plants. Int J Phytoremediation 2019;21:246–50. https://doi.org/10.1080/15226514.2018.1524838.
  660. Kral, N, Ougolnikova, AH, Sena, G. Externally imposed electric field enhances plant root tip regeneration. Regeneration 2016;3:156–67. https://doi.org/10.1002/reg2.59.
  661. Akbal, A, Kiran, Y, Sahin, A, Turgut-Balik, D, Balik, HH. Effects of electromagnetic waves emitted by mobile phones on germination, root growth, and root tip cell mitotic division of lens culinaris medik. Pol J Environ Stud 2012;21:23–9.
  662. Bhardwaj, J, Anand, A, Nagarajan, S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol Biochem 2012;57:67–73. https://doi.org/10.1016/j.plaphy.2012.05.008.
  663. Bhardwaj, J, Anand, A, Pandita, VK, Nagarajan, S. Pulsed magnetic field improves seed quality of aged green pea seeds by homeostasis of free radical content. J Food Sci Technol 2016;53:3969–77. https://doi.org/10.1007/s13197-016-2392-8.
  664. Patel, P, Kadur Narayanaswamy, G, Kataria, S, Baghel, L. Involvement of nitric oxide in enhanced germination and seedling growth of magnetoprimed maize seeds. Plant Signal Behav 2017;12:e1293217. https://doi.org/10.1080/15592324.2017.1293217.
  665. Payez, A, Ghanati, F, Behmanesh, M, Abdolmaleki, P, Hajnorouzi, A, Rajabbeigi, E. Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field. Electromagn Biol Med 2013;32:417–29. https://doi.org/10.3109/15368378.2012.735625.
  666. Rajabbeigi, E, Ghanati, F, Abdolmaleki, P, Payez, A. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med 2013;32:430–41. https://doi.org/10.3109/15368378.2012.736441.
  667. Sharma, VP, Singh, HP, Kohli, RK, Batish, DR. Mobile phone radiation inhibits vigna radiate (mung bean) root growth by inducing oxidative stress. Sci Total Environ 2009a;407:5543–7. https://doi.org/10.1016/j.scitotenv.2009.07.006.
  668. Sharma, VP, Singh, HP, Kohli, RK. Effect of mobile phone EMF on biochemical changes in emerging seedlings of Phaseolus aureus Roxb. Ecoscan 2009b;3:211–14.
  669. Shine, MB, Guruprasad, KN, Anand, A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 2012;33:428–37. https://doi.org/10.1002/bem.21702.
  670. Singh, HP, Sharma, VP, Batish, DR, Kohli, RK. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess 2012;184:1813–21. https://doi.org/10.1007/s10661-011-2080-0.
  671. Tkalec, M, Malari, K, Pevalek-Kozlina, B. Exposure to radiofrequency radiation induces oxidative stress in duckweed lemna minor l. Sci Total Environ 2007;388:78–89. https://doi.org/10.1016/j.scitotenv.2007.07.052.
  672. Roux, D, Vian, A, Girard, S, Bonnet, P, Paladian, F, Davies, E, et al.. High frequency (900 MHz) low amplitude (5 V m-1) electromagnetic field: a genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta 2008;227:883–91. https://doi.org/10.1007/s00425-007-0664-2.
  673. Roux, D, Faure, C, Bonnet, P, Girard, S, Ledoigt, G, Davies, E, et al.. A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signal Behav 2008;3:383–5. https://doi.org/10.4161/psb.3.6.5385.
  674. da Silva, JA, Dobránszki, J. Magnetic fields: how is plant growth and development impacted? Protoplasma 2016;253:231–48. https://doi.org/10.1007/s00709-015-0820-7.
  675. Maffei, ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 2014;5:445. https://doi.org/10.3389/fpls.2014.00445.

MeSH Term

Animals
Ecosystem
Electromagnetic Fields
Environmental Pollution
Humans
Mammals
Radio Waves

Word Cloud

Similar Articles

Cited By