HIV infection drives interferon signaling within intestinal SARS-CoV-2 target cells.

Rabiah Fardoos, Osaretin E Asowata, Nicholas Herbert, Sarah K Nyquist, Yenzekile Zungu, Alveera Singh, Abigail Ngoepe, Ian M Mbano, Ntombifuthi Mthabela, Dirhona Ramjit, Farina Karim, Warren Kuhn, Fusi G Madela, Vukani T Manzini, Frank Anderson, Bonnie Berger, Tune H Pers, Alex K Shalek, Alasdair Leslie, Henrik N Kløverpris
Author Information
  1. Rabiah Fardoos: Africa Health Research Institute, Durban, South Africa.
  2. Osaretin E Asowata: Africa Health Research Institute, Durban, South Africa.
  3. Nicholas Herbert: Africa Health Research Institute, Durban, South Africa.
  4. Sarah K Nyquist: Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  5. Yenzekile Zungu: Africa Health Research Institute, Durban, South Africa.
  6. Alveera Singh: Africa Health Research Institute, Durban, South Africa.
  7. Abigail Ngoepe: Africa Health Research Institute, Durban, South Africa.
  8. Ian M Mbano: Africa Health Research Institute, Durban, South Africa.
  9. Ntombifuthi Mthabela: Africa Health Research Institute, Durban, South Africa.
  10. Dirhona Ramjit: Africa Health Research Institute, Durban, South Africa.
  11. Farina Karim: Africa Health Research Institute, Durban, South Africa.
  12. Warren Kuhn: ENT Department, General Justice Gizenga Mpanza Regional Hospital (Stanger Hospital), University of KwaZulu-Natal, Durban, South Africa.
  13. Fusi G Madela: Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa.
  14. Vukani T Manzini: Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa.
  15. Frank Anderson: Discipline of General Surgery, Inkosi Albert Luthuli Central Hospital, University of KwaZulu-Natal, Durban, South Africa.
  16. Bonnie Berger: Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, Massachusetts, USA.
  17. Tune H Pers: Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  18. Alex K Shalek: Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.
  19. Alasdair Leslie: Africa Health Research Institute, Durban, South Africa.
  20. Henrik N Kløverpris: Africa Health Research Institute, Durban, South Africa.

Abstract

SARS-CoV-2 infects epithelial cells of the human gastrointestinal (GI) tract and causes related symptoms. HIV infection impairs gut homeostasis and is associated with an increased risk of COVID-19 fatality. To investigate the potential link between these observations, we analyzed single-cell transcriptional profiles and SARS-CoV-2 entry receptor expression across lymphoid and mucosal human tissue from chronically HIV-infected individuals and uninfected controls. Absorptive gut enterocytes displayed the highest coexpression of SARS-CoV-2 receptors ACE2, TMPRSS2, and TMPRSS4, of which ACE2 expression was associated with canonical interferon response and antiviral genes. Chronic treated HIV infection was associated with a clear antiviral response in gut enterocytes and, unexpectedly, with a substantial reduction of ACE2 and TMPRSS2 target cells. Gut tissue from SARS-CoV-2-infected individuals, however, showed abundant SARS-CoV-2 nucleocapsid protein in both the large and small intestine, including an HIV-coinfected individual. Thus, upregulation of antiviral response genes and downregulation of ACE2 and TMPRSS2 in the GI tract of HIV-infected individuals does not prevent SARS-CoV-2 infection in this compartment. The impact of these HIV-associated intestinal mucosal changes on SARS-CoV-2 infection dynamics, disease severity, and vaccine responses remains unclear and requires further investigation.

Keywords

References

  1. Nat Med. 2021 Mar;27(3):546-559 [PMID: 33654293]
  2. Nature. 2019 May;569(7754):126-130 [PMID: 30988509]
  3. Cell. 2021 May 13;184(10):2605-2617.e18 [PMID: 33831372]
  4. Immunity. 2020 Oct 13;53(4):878-894.e7 [PMID: 33053333]
  5. Clin Infect Dis. 2020 Dec 31;71(11):2933-2938 [PMID: 32594164]
  6. Cytokine Growth Factor Rev. 2003 Jun-Aug;14(3-4):337-48 [PMID: 12787570]
  7. Nature. 2021 Mar;591(7851):639-644 [PMID: 33461210]
  8. Lancet HIV. 2020 May;7(5):e319-e320 [PMID: 32277870]
  9. PLoS Pathog. 2019 Oct 10;15(10):e1008093 [PMID: 31600344]
  10. Nature. 2012 Jul 25;487(7408):477-81 [PMID: 22837003]
  11. Brain. 2015 Jan;138(Pt 1):203-16 [PMID: 25472798]
  12. Nat Methods. 2017 Apr;14(4):395-398 [PMID: 28192419]
  13. Science. 2020 Jul 31;369(6503):510-511 [PMID: 32732413]
  14. Circ Res. 2016 Apr 15;118(8):1327-36 [PMID: 27081113]
  15. Hypertension. 2020 Apr;75(4):1063-1071 [PMID: 32088998]
  16. Nature. 2021 Apr;592(7854):438-443 [PMID: 33690265]
  17. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  18. Cell Rep. 2020 Jul 21;32(3):107915 [PMID: 32649864]
  19. Clin Infect Dis. 2020 Aug 29;: [PMID: 32860699]
  20. Sci Immunol. 2020 May 13;5(47): [PMID: 32404436]
  21. Lancet HIV. 2020 Aug;7(8):e554-e564 [PMID: 32473657]
  22. Gut. 2020 Jun;69(6):1141-1143 [PMID: 32102928]
  23. Cell Host Microbe. 2016 Mar 9;19(3):311-22 [PMID: 26962942]
  24. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  25. Gut. 2020 Jun;69(6):1002-1009 [PMID: 32213556]
  26. J Exp Med. 2004 Sep 20;200(6):749-59 [PMID: 15365096]
  27. Virus Evol. 2021 Apr 21;7(1):veab041 [PMID: 34035952]
  28. Nature. 2005 Apr 28;434(7037):1093-7 [PMID: 15793563]
  29. Nat Med. 2020 Jul;26(7):1077-1083 [PMID: 32405028]
  30. Nat Microbiol. 2020 Apr;5(4):562-569 [PMID: 32094589]
  31. Nat Genet. 2020 Dec;52(12):1283-1293 [PMID: 33077916]
  32. Mediators Inflamm. 2016;2016:8413768 [PMID: 27143819]
  33. Mucosal Immunol. 2008 Jan;1(1):23-30 [PMID: 19079157]
  34. Amino Acids. 2015 Apr;47(4):693-705 [PMID: 25534429]
  35. Gut. 2016 Feb;65(2):256-70 [PMID: 25666191]
  36. Nat Med. 2005 May;11(5):469-70 [PMID: 15875046]
  37. HIV Med. 2021 May;22(5):372-378 [PMID: 33368966]
  38. Oncogene. 2000 May 15;19(21):2577-84 [PMID: 10851056]
  39. Genes (Basel). 2020 Jun 11;11(6): [PMID: 32545271]
  40. Nature. 2021 Apr;592(7853):277-282 [PMID: 33545711]
  41. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  42. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  43. Gastroenterology. 2009 Mar;136(3):872-82 [PMID: 19185582]
  44. Gastroenterology. 2020 May;158(6):1831-1833.e3 [PMID: 32142773]

Grants

  1. R01 HL095791/NHLBI NIH HHS
  2. R01 HL134539/NHLBI NIH HHS
  3. R01 AI138546/NIAID NIH HHS
  4. T32 GM087237/NIGMS NIH HHS
  5. U19 AI089992/NIAID NIH HHS
  6. U24 AI118672/NIAID NIH HHS
  7. /Wellcome Trust

MeSH Term

Adult
Angiotensin-Converting Enzyme 2
Chronic Disease
Female
HIV Infections
Humans
Intestinal Mucosa
Male
Middle Aged
SARS-CoV-2
Serine Endopeptidases

Chemicals

ACE2 protein, human
Angiotensin-Converting Enzyme 2
Serine Endopeptidases
TMPRSS2 protein, human