Nopp140-chaperoned 2'-O-methylation of small nuclear RNAs in Cajal bodies ensures splicing fidelity.

Jonathan Bizarro, Svetlana Deryusheva, Ludivine Wacheul, Varun Gupta, Felix G M Ernst, Denis L J Lafontaine, Joseph G Gall, U Thomas Meier
Author Information
  1. Jonathan Bizarro: Albert Einstein College of Medicine, Bronx, New York 10461, USA. ORCID
  2. Svetlana Deryusheva: Carnegie Institution for Science, Baltimore, Maryland 21218, USA. ORCID
  3. Ludivine Wacheul: RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium.
  4. Varun Gupta: Albert Einstein College of Medicine, Bronx, New York 10461, USA.
  5. Felix G M Ernst: RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium. ORCID
  6. Denis L J Lafontaine: RNA Molecular Biology, Fonds National de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium. ORCID
  7. Joseph G Gall: Carnegie Institution for Science, Baltimore, Maryland 21218, USA. ORCID
  8. U Thomas Meier: Albert Einstein College of Medicine, Bronx, New York 10461, USA. ORCID

Abstract

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.

Keywords

References

  1. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  2. Mol Biol Cell. 2007 Jun;18(6):2296-304 [PMID: 17429075]
  3. Nucleic Acids Res. 2012 Nov 1;40(20):e157 [PMID: 22833606]
  4. Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12934-12939 [PMID: 29158377]
  5. RNA. 2004 Dec;10(12):1925-33 [PMID: 15525712]
  6. Chromosoma. 2015 Jun;124(2):191-208 [PMID: 25384888]
  7. Nucleic Acids Res. 2018 Oct 12;46(18):9289-9298 [PMID: 30202881]
  8. J Cell Biol. 1990 Dec;111(6 Pt 1):2235-45 [PMID: 2177472]
  9. EMBO J. 2016 Mar 15;35(6):654-67 [PMID: 26873591]
  10. Int J Mol Sci. 2018 Jan 27;19(2): [PMID: 29382046]
  11. Mol Biol Cell. 2009 Dec;20(24):5250-9 [PMID: 19846657]
  12. Biochem J. 2009 Jul 15;421(3):387-95 [PMID: 19432557]
  13. Cancer Res. 2010 Dec 15;70(24):10288-98 [PMID: 21159648]
  14. Mol Cell Biol. 1999 Oct;19(10):6906-17 [PMID: 10490628]
  15. Angew Chem Int Ed Engl. 2015 Jan 7;54(2):451-5 [PMID: 25417815]
  16. Nucleic Acids Res. 2020 Nov 4;48(19):e110 [PMID: 32976574]
  17. Annu Rev Biochem. 2020 Jun 20;89:359-388 [PMID: 31794245]
  18. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  19. Biochimie. 1995;77(1-2):22-9 [PMID: 7599273]
  20. Cell. 1997 May 30;89(5):669-72 [PMID: 9182752]
  21. Methods Enzymol. 2000;318:493-506 [PMID: 10890008]
  22. Science. 2020 Dec 18;370(6523): [PMID: 33243851]
  23. Org Biomol Chem. 2017 Oct 31;15(42):8872-8876 [PMID: 29048444]
  24. Mol Biol Cell. 1992 May;3(5):555-69 [PMID: 1535243]
  25. Mol Cell. 2013 Aug 22;51(4):539-51 [PMID: 23973377]
  26. Nucleic Acids Res. 2007;35(2):550-8 [PMID: 17169984]
  27. Genes Dev. 1989 Dec;3(12B):2124-36 [PMID: 2560754]
  28. Chromosoma. 2005 May;114(1):1-14 [PMID: 15770508]
  29. Nat Rev Mol Cell Biol. 2003 Dec;4(12):975-80 [PMID: 14685175]
  30. EMBO J. 2001 Jul 16;20(14):3617-22 [PMID: 11447102]
  31. J Biol Chem. 1996 Aug 9;271(32):19376-84 [PMID: 8702624]
  32. RNA. 2004 Apr;10(4):681-90 [PMID: 15037777]
  33. Cell. 1992 Jul 10;70(1):127-38 [PMID: 1623516]
  34. Nucleic Acids Res. 2016 Sep 19;44(16):e135 [PMID: 27302133]
  35. Mol Biol Cell. 2019 Dec 15;30(26):3136-3150 [PMID: 31664887]
  36. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  37. Biochem J. 2001 Jun 1;356(Pt 2):297-310 [PMID: 11368755]
  38. J Cell Biol. 1984 Aug;99(2):672-9 [PMID: 6204996]
  39. RNA. 1997 Mar;3(3):324-31 [PMID: 9056769]
  40. J Cell Biol. 2001 Jul 23;154(2):293-307 [PMID: 11470819]
  41. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  42. RNA. 2012 Jan;18(1):31-6 [PMID: 22124016]
  43. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D158-62 [PMID: 16381836]
  44. J Cell Sci. 2004 Dec 1;117(Pt 25):5949-51 [PMID: 15564372]
  45. Cell. 2017 May 18;169(5):918-929.e14 [PMID: 28502770]
  46. Science. 2015 Nov 27;350(6264):1096-101 [PMID: 26472758]
  47. J Histochem Cytochem. 1990 Sep;38(9):1237-56 [PMID: 2201735]
  48. Nucleic Acids Res. 2015 Feb 27;43(4):2242-58 [PMID: 25653167]
  49. Mol Cell. 2020 Mar 5;77(5):1014-1031.e13 [PMID: 32017898]
  50. RNA Biol. 2017 Jun 3;14(6):680-692 [PMID: 27715451]
  51. RNA. 1997 Sep;3(9):950-1 [PMID: 9292493]
  52. Annu Rev Biochem. 1995;64:897-934 [PMID: 7574504]
  53. Curr Opin Cell Biol. 1999 Jun;11(3):385-90 [PMID: 10395554]
  54. Biochim Biophys Acta. 2013 Jan;1834(1):342-50 [PMID: 22906532]
  55. RNA Biol. 2017 Jun 3;14(6):669-670 [PMID: 28486008]
  56. EMBO J. 2003 Apr 15;22(8):1878-88 [PMID: 12682020]
  57. Cell. 2020 Aug 6;182(3):685-712.e19 [PMID: 32645325]
  58. RNA. 2013 Dec;19(12):1802-14 [PMID: 24149844]
  59. EMBO J. 1998 Oct 1;17(19):5783-95 [PMID: 9755178]
  60. J Cell Biol. 1994 Dec;127(6 Pt 1):1505-14 [PMID: 7798307]
  61. Nat Rev Mol Cell Biol. 2021 Mar;22(3):165-182 [PMID: 32873929]
  62. Front Genet. 2021 Mar 02;12:652129 [PMID: 33737950]
  63. Biochemistry. 1993 Sep 21;32(37):9754-62 [PMID: 8373778]
  64. RNA Biol. 2017 Jun 3;14(6):693-700 [PMID: 27775477]
  65. Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):17-34 [PMID: 23042601]
  66. Cell. 2015 Dec 3;163(6):1515-26 [PMID: 26627737]
  67. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  68. Mol Biol Cell. 2002 Jan;13(1):362-81 [PMID: 11809845]
  69. Nature. 2020 Jul;583(7815):310-313 [PMID: 32494006]
  70. EMBO J. 2002 Jun 3;21(11):2746-56 [PMID: 12032087]
  71. Nucleic Acids Res. 2016 Sep 19;44(16):7884-95 [PMID: 27257078]
  72. Front Oncol. 2020 Jun 18;10:893 [PMID: 32626654]
  73. Curr Opin Cell Biol. 2015 Jun;34:23-30 [PMID: 25942753]
  74. Sci Rep. 2017 Sep 13;7(1):11490 [PMID: 28904332]
  75. Nucleic Acids Res. 2017 Feb 17;45(3):1433-1441 [PMID: 28180324]
  76. RNA. 2019 Jan;25(1):17-22 [PMID: 30301832]
  77. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4334-9 [PMID: 21368180]
  78. Annu Rev Cell Biol. 1993;9:265-315 [PMID: 8280462]
  79. Mol Cell Biol. 2002 Dec;22(24):8457-66 [PMID: 12446766]
  80. Front Pharmacol. 2015 Mar 31;6:70 [PMID: 25873900]
  81. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5593-601 [PMID: 25480548]

Grants

  1. P30 CA013330/NCI NIH HHS
  2. R01 GM033397/NIGMS NIH HHS
  3. R01 HL136662/NHLBI NIH HHS
  4. S10 OD016214/NIH HHS

MeSH Term

Casein Kinase II
Cholangiocarcinoma
Hematologic Neoplasms
Humans
Interstitial Cells of Cajal
Methylation
Nuclear Proteins
Phosphoproteins
Phosphorylation
RNA Splicing
RNA, Small Nuclear
Ribonucleoproteins
Spliceosomes
COVID-19 Drug Treatment

Chemicals

NOLC1 protein, human
Nuclear Proteins
Phosphoproteins
RNA, Small Nuclear
Ribonucleoproteins
Casein Kinase II