Leafless epiphytic orchids share Ceratobasidiaceae mycorrhizal fungi.

Jiao Qin, Wei Zhang, Jing-Qiu Feng, Shi-Bao Zhang
Author Information
  1. Jiao Qin: Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, China.
  2. Wei Zhang: Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, China.
  3. Jing-Qiu Feng: Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, China.
  4. Shi-Bao Zhang: Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, 650201, China. sbzhang@mail.kib.ac.cn. ORCID

Abstract

Some epiphytic orchids in the tribe Vandeae are characterized by extremely vestigial leaves (even leafless). Thus, their leaves provide only a small proportion of carbon required for their growth and development, while a large portion of carbon may need to be supplied by their roots and mycorrhizal fungi (MF). The MF richness and composition of leafless epiphytic orchids, which belong to numerous genera with diverse ecophysiologies and wide geographical ranges, remain poorly understood. In this study, we identified the MF communities of seven leafless epiphytic species from three orchid genera from up to 17 sites in China using high-throughput sequencing. Our analyses revealed that the leafless epiphytic orchids have a highly specialized association with Ceratobasidiaceae. Several fungal OTUs were found in three different orchid genera and have promoted germinations of Chiloschista and Phalaenopsis, which may have been caused by convergent evolution of leafless epiphytic orchids. Furthermore, the MF composition of Taeniophyllum glandulosum was significantly affected by collection site and host tree. Our study provides new insights into mycorrhizal associations of epiphytic orchids.

Keywords

References

Adamo M, Chialva M, Calevo J, De Rose S, Girlanda M, Perotto S, Balestrini R (2020) The dark side of orchid symbiosis: can Tulasnella calospora decompose host tissues? Int J Mol Sci 21:3139. https://doi.org/10.3390/ijms21093139 [DOI: 10.3390/ijms21093139]
Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.
Benzing DH, Ott DW (1981) Vegetative reduction in epiphytic Bromeliaceae and Orchidaceae: its origin and significance. Biotropica 13:131–140. https://doi.org/10.2307/2387715 [DOI: 10.2307/2387715]
Benzing DH, Friedman WE, Peterson G, Renfrow A (1983) Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. Am J Bot 70:121–133. https://doi.org/10.1002/j.1537-2197.1983.tb12440.x [DOI: 10.1002/j.1537-2197.1983.tb12440.x]
Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read D (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. P Roy Soc B-Biol Sci 271:1799–1806. https://doi.org/10.1098/rspb.2004.2807 [DOI: 10.1098/rspb.2004.2807]
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303 [DOI: 10.1038/nmeth.f.303]
Carlsward BS, Whitten WMWNH, Bytebier B (2006) Molecular phylogenetics of Vandeae (Orchidaceae) and the evolution of leaflessness. Am J Bot 93:770–786. https://doi.org/10.3732/ajb.93.5.770 [DOI: 10.3732/ajb.93.5.770]
Chomicki G, Bidel LPR, Jay-Allemand C (2014) Exodermis structure controls fungal invasion in the leafless epiphytic orchid Dendrophylax lindenii (Lindl.) Benth. ex Rolfe. Flora 209:88–94. https://doi.org/10.1016/j.flora.2014.01.001 [DOI: 10.1016/j.flora.2014.01.001]
Dearnaley J, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Esser K (ed) The Mycota Volume IX -Fungal Associations, 2nd ed. Springer-Verlag, Berlin, pp 207–230
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/Nmeth.2604 [DOI: 10.1038/Nmeth.2604]
Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482. https://doi.org/10.1093/bioinformatics/btv401 [DOI: 10.1093/bioinformatics/btv401]
Esposito F, Jacquemyn H, Waud M, Tyteca D (2016) Mycorrhizal fungal diversity and community composition in two closely related Platanthera (Orchidaceae) species. PLoS ONE 11:e0164108. https://doi.org/10.1371/journal.pone.0164108 [DOI: 10.1371/journal.pone.0164108]
Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Botany-Revue Canadienne De Botanique 69:180–190. https://doi.org/10.1139/b91-026 [DOI: 10.1139/b91-026]
Gowland KM, Mathesius U, Clements MA, Nicotra AB (2007) Understanding the distribution of three species of epiphytic orchids in temperate Australian rain forest by investigation of their host and fungal associates. Lankesteriana 7:44–46. https://doi.org/10.15517/lank.v7i1-2.18389 [DOI: 10.15517/lank.v7i1-2.18389]
Gowland KM, van der Merwe MM, Linde CC, Clements MA, Nicotra AB (2013) The host bias of three epiphytic Aeridinae orchid species is reflected, but not explained, by mycorrhizal fungal associations. Am J Bot 100:764–777. https://doi.org/10.3732/ajb.1200411 [DOI: 10.3732/ajb.1200411]
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Hidayat T, Weston PH, Yukawa T, Ito M, Rice R (2012) Phylogeny of subtribe Aeridinae (Orchidaceae) inferred from DNA sequences data: Advanced analyses including Australasian genera. J Technol (sci Eng) 59:87–95. https://doi.org/10.11113/jt.v59.1591 [DOI: 10.11113/jt.v59.1591]
Hoang NH, Kane ME, Radcliffe EN, Zettler LW, Richardson LW (2017) Comparative seed germination and seedling development of the ghost orchid, Dendrophylax lindenii (Orchidaceae), and molecular identification of its mycorrhizal fungus from South Florida. Ann Bot-London 119:379–393. https://doi.org/10.1093/aob/mcw220 [DOI: 10.1093/aob/mcw220]
Irawati I (2009) Self and cross inoculation of Papilionanthe hookeriana and Taeniophyllum obtusum. Bull Kebun Raya 12:11–18. https://doi.org/10.14203/bkr.v12i1.77 [DOI: 10.14203/bkr.v12i1.77]
Jacquemyn H, Waud M, Lievens B, Brys R (2016) Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann Bot-London 118:105–114. https://doi.org/10.1093/aob/mcw015 [DOI: 10.1093/aob/mcw015]
Johnson LJAN (2019) Investigating specificity and diversity of orchid mycorrhizal fungi of Vanilla planifolia and Dendrophylax lindenii. Dissertation, Northwestern University, Illinois.
Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. https://doi.org/10.1111/j.1469-8137.2005.01376.x [DOI: 10.1111/j.1469-8137.2005.01376.x]
Katoh K, Standley DM (2013) MAFFT multiple sequence aalignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 [DOI: 10.1093/molbev/mst010]
Kobayashi K, Suetsugu K, Wada H (2021) The leafless orchid Cymbidium macrorhizon performs photosynthesis in the pericarp during the fruiting season. Plant Cell Physiol pcab006. https://doi.org/10.1093/pcp/pcab006
Kottke I, Suarez JP, Herrera P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc Roy Soc B-Biol Sci 277:1289–1298. https://doi.org/10.1098/rspb.2009.1884 [DOI: 10.1098/rspb.2009.1884]
Lee Y, Yang C, Gebauer G (2015) The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Ann Bot-London 116:423–435. https://doi.org/10.1093/aob/mcv085 [DOI: 10.1093/aob/mcv085]
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal 17:10–12. https://doi.org/10.14806/ej.17.1.200 [DOI: 10.14806/ej.17.1.200]
Merckx VSFT (2013) Mycoheterotrophy: the biology of plants living on fungi. Springer Science & Business Media, New York, p 356 [DOI: 10.1007/978-1-4614-5209-6]
Mújica EB, Mably JJ, Skarha SM, Corey LL, Richardson LW, Danaher MW, Gonzalez EH, Zettler LW (2018) A comparison of ghost orchid (Dendrophylax lindenii) habitats in Florida and Cuba, with particular reference to seedling recruitment and mycorrhizal fungi. Bot J Linn Soc 186:572–586. https://doi.org/10.1093/botlinnean/box106 [DOI: 10.1093/botlinnean/box106]
Nurfadilah S, Yulia ND, Ariyanti EE (2016) Morphology, anatomy, and mycorrhizal fungi colonization in roots of epiphytic orchids of Sempu Island, Island, East Java. Indonesia Biodiversitas 17:592603. https://doi.org/10.13057/biodiv/d170229 [DOI: 10.13057/biodiv/d170229]
Nylander J (2004) MrModeltest 2.2. Computer software distributed by the University of Uppsala, Sweden. Evolutionary Biology Centre, Uppsala University, Uppsala
Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97. https://doi.org/10.3732/ajb.95.1.93 [DOI: 10.3732/ajb.95.1.93]
Okayama M, Yamato M, Yagame T, Iwase K (2012) Mycorrhizal diversity and specificity in Lecanorchis (Orchidaceae). Mycorrhiza 22:545–553. https://doi.org/10.1007/s00572-012-0429-z [DOI: 10.1007/s00572-012-0429-z]
Oksanen J, Guillaume Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community ecology package. R Package Version 2.5–6.
Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858. https://doi.org/10.3732/ajb.89.11.1852 [DOI: 10.3732/ajb.89.11.1852]
Perez-Lamarque B, Selosse MA, Öpik M, Morlon H, Martos F (2020) Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol 226:1822–1835. https://doi.org/10.1111/nph.16474 [DOI: 10.1111/nph.16474]
Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869. https://doi.org/10.1111/j.1365-2745.2011.01797.x [DOI: 10.1111/j.1365-2745.2011.01797.x]
Rammitsu K, Yagame T, Yamashita Y, Yukawa T, Isshiki S, Ogura-Tsujita Y (2019) A leafless epiphytic orchid, Taeniophyllum glandulosum Blume (Orchidaceae), is specifically associated with the Ceratobasidiaceae family of basidiomycetous fungi. Mycorrhiza 29:159–166. https://doi.org/10.1007/s00572-019-00881-7 [DOI: 10.1007/s00572-019-00881-7]
Rasmussen HN, Dixon KW, Jersáková J, Těšitelova T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot-London 116:391–402. https://doi.org/10.1093/aob/mcv087 [DOI: 10.1093/aob/mcv087]
Shao S-C, Wang Q-X, Kingly CB, Zhao D-K, Jacquemyn H (2020) Fungi isolated from host protocorms accelerate symbiotic seed germination in an endangered orchid species (Dendrobium chrysotoxum) from southern China. Mycorrhiza 30:529–539. https://doi.org/10.1007/s00572-020-00964-w [DOI: 10.1007/s00572-020-00964-w]
Shefferson RP, Bunch W, Cowden CC, Lee YI, Kartzinel TR, Yukawa T, Downing J, Jiang H (2019) Does evolutionary history determine specificity in broad ecological interactions? J Ecol 107:1582–1593. https://doi.org/10.1111/1365-2745.13170 [DOI: 10.1111/1365-2745.13170]
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446 [DOI: 10.1093/bioinformatics/btl446]
Suetsugu K, Ohta T, Tayasu I (2018) Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. Am J Bot 105:1595–1600. https://doi.org/10.1002/ajb2.1142 [DOI: 10.1002/ajb2.1142]
Suetsugu K, Haraguchi TF, Tanabe AS, Tayasu I (2021a) Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Mycorrhiza 31:243–250. https://doi.org/10.1007/s00572-020-00999-z [DOI: 10.1007/s00572-020-00999-z]
Suetsugu K, Haraguchi TF, Tayasu I (2021b) Novel mycorrhizal cheating in a green orchid: Cremastra appendiculata depends on carbon from deadwood through fungal associations. New Phytol, Online. https://doi.org/10.1111/nph.17313 [DOI: 10.1111/nph.17313]
Suetsugu K, Matsuoka S, Shutoh K, Okada H, Taketomi S, Onimaru K, Tanabe AS, Yamanaka H (2021c) Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat. Mycorrhiza 31:219–229. https://doi.org/10.1007/s00572-020-01002-5 [DOI: 10.1007/s00572-020-01002-5]
Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033. https://doi.org/10.1111/j.1469-8137.2007.02320.x [DOI: 10.1111/j.1469-8137.2007.02320.x]
Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. https://doi.org/10.1016/j.fbr.2013.09.001 [DOI: 10.1016/j.fbr.2013.09.001]
Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (2000) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system (vol 37, p 1846, 1999). J Clin Microbiol 38:944–944 [DOI: 10.1128/JCM.38.2.944-944.2000]
Wang X, Li Y, Song X, Meng Q, Zhu J, Zhao Y, Yu W (2017) Influence of host tree species on isolation and communities of mycorrhizal and endophytic fungi from roots of a tropical epiphytic orchid, Dendrobium sinense (Orchidaceae). Mycorrhiza 27:709–718. https://doi.org/10.1007/s00572-017-0787-7 [DOI: 10.1007/s00572-017-0787-7]
Waud M, Busschaert P, Lievens B, Jacquemyn H (2016) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165. https://doi.org/10.1016/j.funeco.2015.12.008 [DOI: 10.1016/j.funeco.2015.12.008]
Weiß M, Waller F, Zuccaro A, Selosse M-A (2016) Sebacinales-one thousand and one interactions with land plants. New Phytol 211:20–40. https://doi.org/10.1111/nph.13977 [DOI: 10.1111/nph.13977]
Winter K, Medina E, Garcia V, Mayoral ML, Muniz R (1985) Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion Garay and Dunsterv. J Plant Physiol 118:73–78. https://doi.org/10.1016/S0176-1617(85)80166-8 [DOI: 10.1016/S0176-1617(85)80166-8]
Yagame T, Orihara T, Selosse M, Yamato M, Iwase K (2012) Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol 193:178–187. https://doi.org/10.1111/j.1469-8137.2011.03896.x [DOI: 10.1111/j.1469-8137.2011.03896.x]
Yagame T, Ogura-Tsujita Y, Kinoshita A, Iwase K, Yukawa T (2016) Fungal partner shifts during the evolution of mycoheterotrophy in Neottia. Am J Bot 103:1630–1641. https://doi.org/10.3732/ajb.1600063 [DOI: 10.3732/ajb.1600063]
Yamato M, Iwase K, Yagame T, Suzuki A (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77. https://doi.org/10.1007/S10267-004-0218-4 [DOI: 10.1007/S10267-004-0218-4]
Yuan L, Yang ZL, Li SY, Hu H, Huang JL (2010) Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China. Mycorrhiza 20:559–568. https://doi.org/10.1007/s00572-010-0307-5 [DOI: 10.1007/s00572-010-0307-5]
Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009. https://doi.org/10.3732/ajb.0900101 [DOI: 10.3732/ajb.0900101]
Zettler LW, Corey LL, Jacks AL, Gruender LT, Lopez AM (2013) Tulasnella irregularis (Basidiomycota: Tulasnellaceae) from roots of Encyclia tampensis in south Florida, and confirmation of its mycorrhizal significance through symbiotic seed germination. Lankesteriana 13:119–128. https://doi.org/10.15517/lank.v0i0.11552 [DOI: 10.15517/lank.v0i0.11552]
Zotz G (2013) The systematic distribution of vascular epiphytes a critical update. Bot J Linn Soc 171:453–481. https://doi.org/10.1111/boj.12010 [DOI: 10.1111/boj.12010]

MeSH Term

Basidiomycota
Mycobiome
Mycorrhizae
Orchidaceae
Phylogeny
Symbiosis

Word Cloud

Similar Articles

Cited By