Maturation signatures of conventional dendritic cell subtypes in COVID-19 suggest direct viral sensing.

Laura Marongiu, Giulia Protti, Fabio A Facchini, Mihai Valache, Francesca Mingozzi, Valeria Ranzani, Anna Rita Putignano, Lorenzo Salviati, Valeria Bevilacqua, Serena Curti, Mariacristina Crosti, Maria Lucia Sarnicola, Mariella D'Angiò, Laura Rachele Bettini, Andrea Biondi, Luca Nespoli, Nicolò Tamini, Nicola Clementi, Nicasio Mancini, Sergio Abrignani, Roberto Spreafico, Francesca Granucci
Author Information
  1. Laura Marongiu: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  2. Giulia Protti: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  3. Fabio A Facchini: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  4. Mihai Valache: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  5. Francesca Mingozzi: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  6. Valeria Ranzani: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  7. Anna Rita Putignano: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  8. Lorenzo Salviati: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
  9. Valeria Bevilacqua: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  10. Serena Curti: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  11. Mariacristina Crosti: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  12. Maria Lucia Sarnicola: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  13. Mariella D'Angiò: Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy.
  14. Laura Rachele Bettini: Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy.
  15. Andrea Biondi: Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy.
  16. Luca Nespoli: ASST san Gerardo Hospital, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
  17. Nicolò Tamini: ASST san Gerardo Hospital, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
  18. Nicola Clementi: Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.
  19. Nicasio Mancini: Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy.
  20. Sergio Abrignani: National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", Milan, Italy.
  21. Roberto Spreafico: Institute for Quantitative and Computational Biosciences, University of California, Los Angeles.
  22. Francesca Granucci: Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy. ORCID

Abstract

Growing evidence suggests that conventional dendritic cells (cDCs) undergo aberrant maturation in COVID-19, which negatively affects T-cell activation. The presence of effector T cells in patients with mild disease and dysfunctional T cells in severely ill patients suggests that adequate T-cell responses limit disease severity. Understanding how cDCs cope with SARS-CoV-2 can help elucidate how protective immune responses are generated. Here, we report that cDC2 subtypes exhibit similar infection-induced gene signatures, with the upregulation of IFN-stimulated genes and IL-6 signaling pathways. Furthermore, comparison of cDCs between patients with severe and mild disease showed severely ill patients to exhibit profound downregulation of genes encoding molecules involved in antigen presentation, such as MHCII, TAP, and costimulatory proteins, whereas we observed the opposite for proinflammatory molecules, such as complement and coagulation factors. Thus, as disease severity increases, cDC2s exhibit enhanced inflammatory properties and lose antigen presentation capacity. Moreover, DC3s showed upregulation of anti-apoptotic genes and accumulated during infection. Direct exposure of cDC2s to the virus in vitro recapitulated the activation profile observed in vivo. Our findings suggest that SARS-CoV-2 interacts directly with cDC2s and implements an efficient immune escape mechanism that correlates with disease severity by downregulating crucial molecules required for T-cell activation.

Keywords

References

  1. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  2. Cell. 2021 Feb 18;184(4):861-880 [PMID: 33497610]
  3. Science. 2017 Jun 9;356(6342): [PMID: 28473638]
  4. J Clin Invest. 2020 Dec 1;130(12):6290-6300 [PMID: 32784290]
  5. Cell Res. 2021 Mar;31(3):272-290 [PMID: 33473155]
  6. Immunity. 2020 Jul 14;53(1):19-25 [PMID: 32610079]
  7. Virology. 2003 Jan 5;305(1):115-23 [PMID: 12504546]
  8. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  9. Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26328-26339 [PMID: 33020261]
  10. Immunity. 2019 Sep 17;51(3):573-589.e8 [PMID: 31474513]
  11. Nat Med. 2020 Mar;26(3):333-340 [PMID: 32066974]
  12. Nat Commun. 2020 Jul 6;11(1):3434 [PMID: 32632085]
  13. Cancer Res. 2016 Aug 1;76(15):4332-46 [PMID: 27325645]
  14. Nat Rev Immunol. 2019 Feb;19(2):89-103 [PMID: 30464294]
  15. J Leukoc Biol. 2017 Jan;101(1):39-52 [PMID: 27793959]
  16. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): [PMID: 33479167]
  17. Science. 2017 Apr 21;356(6335): [PMID: 28428369]
  18. Annu Rev Immunol. 2021 Apr 26;39:131-166 [PMID: 33481643]
  19. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  20. Front Immunol. 2017 Oct 23;8:1350 [PMID: 29109727]
  21. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  22. Cell Rep. 2021 Feb 9;34(6):108728 [PMID: 33516277]
  23. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  24. Blood. 2013 Aug 8;122(6):932-42 [PMID: 23794066]
  25. Nat Immunol. 2021 Feb;22(2):140-153 [PMID: 33349708]
  26. J Clin Invest. 2018 May 1;128(5):1720-1723 [PMID: 29629898]
  27. J Exp Med. 2010 Jun 7;207(6):1247-60 [PMID: 20479116]
  28. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5215-20 [PMID: 10220446]
  29. Bioinformatics. 2020 Feb 15;36(4):1150-1158 [PMID: 31501871]
  30. J Immunol. 2014 Nov 15;193(10):4914-4923 [PMID: 25288570]
  31. Nat Rev Rheumatol. 2020 Oct;16(10):581-589 [PMID: 32733003]
  32. Immunity. 2020 Aug 18;53(2):335-352.e8 [PMID: 32610077]
  33. Blood. 2008 Aug 15;112(4):1299-307 [PMID: 18541725]
  34. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  35. Nat Immunol. 2014 Feb;15(2):195-204 [PMID: 24336226]
  36. Nat Rev Immunol. 2021 Feb;21(2):101-115 [PMID: 32908299]
  37. J Exp Med. 1999 Oct 18;190(8):1155-64 [PMID: 10523613]
  38. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  39. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  40. Eur J Immunol. 2022 Jan;52(1):109-122 [PMID: 34333764]
  41. J Infect Dis. 2021 Mar 3;223(5):785-795 [PMID: 33277988]
  42. Immunity. 2021 Jun 8;54(6):1304-1319.e9 [PMID: 34048708]
  43. Am J Transplant. 2014 May;14(5):1021-1031 [PMID: 24731243]
  44. Front Cell Infect Microbiol. 2013 Jul 24;3:32 [PMID: 23898465]
  45. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  46. Eur J Immunol. 2019 Oct;49(10):1457-1973 [PMID: 31633216]
  47. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  48. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  49. Immunity. 2020 Oct 13;53(4):864-877.e5 [PMID: 32791036]
  50. Immunity. 2016 Sep 20;45(3):669-684 [PMID: 27637149]
  51. Immunity. 2020 Aug 18;53(2):353-370.e8 [PMID: 32735845]
  52. mBio. 2017 Oct 3;8(5): [PMID: 28974616]

Grants

  1. IG 2019Id.23512/Fondazione Cariplo (INNATE-CoV), Fondazione Veronesi (FRACOVID), AIRC
  2. IANG-CRC - CP2_12/2018/Fondazione Regionale per la Ricerca Biomedica, FRRB
  3. RF-2018-12367072/Ministero della Salute, Ricerca Finalizzata

MeSH Term

COVID-19
Dendritic Cells
Humans
Lymphocyte Activation
SARS-CoV-2
Signal Transduction
T-Lymphocytes