Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma.

Chia-Lang Hsu, Da-Liang Ou, Li-Yuan Bai, Chia-Wei Chen, Li Lin, Shiu-Feng Huang, Ann-Lii Cheng, Yung-Ming Jeng, Chiun Hsu
Author Information
  1. Chia-Lang Hsu: Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
  2. Da-Liang Ou: Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
  3. Li-Yuan Bai: Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital and China Medical University, Taichung, Taiwan.
  4. Chia-Wei Chen: Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
  5. Li Lin: Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
  6. Shiu-Feng Huang: Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.
  7. Ann-Lii Cheng: National Taiwan University Cancer Center, Taipei, Taiwan.
  8. Yung-Ming Jeng: Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
  9. Chiun Hsu: Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.

Abstract

BACKGROUND: Reversal of CD8 T-cell exhaustion was considered a major antitumor mechanism of anti-programmed cell death-1 (PD-1)/ anti-programmed death ligand-1 (PD-L1)-based immune checkpoint inhibitor (ICI) therapy.
OBJECTIVES: The aim of this study was to identify markers of T-cell exhaustion that is best associated with ICI treatment efficacy for advanced hepatocellular carcinoma (HCC).
METHODS: Immune cell composition of archival tumor samples was analyzed by transcriptomic analysis and multiplex immunofluorescence staining.
RESULTS: HCC patients with objective response after anti-PD-1/anti-PD-L1-based ICI therapy ( = 42) had higher expression of genes related to T-cell exhaustion. A 9-gene signature (LAG3, CD244, CCL5, CXCL9, CXCL13, MSR1, CSF3R, CYBB, and KLRK1) was defined, whose expression was higher in patients with response to ICI therapy, correlated with density of CD8LAG3 cells in tumor microenvironment, and independently predicted better progression-free and overall survival. This 9-gene signature had similar predictive values for patients who received single-agent or combination ICI therapy and was not associated with prognosis in HCC patients who received surgery, suggesting that it may outperform other T-cell signatures for predicting efficacy of ICI therapy for HCC. For HCC patients who underwent surgery for both the primary liver and metastatic lung tumors ( = 31), lung metastatic HCC was associated with a higher exhausted CD8 T-cell signature, consistent with prior observation that patients with lung metastatic HCC may have higher probability of response to ICI therapy.
CONCLUSIONS: CD8 T-cell exhaustion in tumor microenvironment may predict better efficacy of ICI therapy for HCC.

Keywords

References

  1. J Immunother Cancer. 2018 Dec 7;6(1):144 [PMID: 30526672]
  2. J Clin Oncol. 2019 Feb 1;37(4):318-327 [PMID: 30557521]
  3. Nat Med. 2018 Oct;24(10):1550-1558 [PMID: 30127393]
  4. J Formos Med Assoc. 2017 Jul;116(7):549-553 [PMID: 28277286]
  5. Nat Rev Immunol. 2015 Aug;15(8):486-99 [PMID: 26205583]
  6. J Immunother Cancer. 2021 Mar;9(3): [PMID: 33753566]
  7. Nat Rev Immunol. 2019 Nov;19(11):665-674 [PMID: 31570879]
  8. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  9. Liver Cancer. 2019 Nov;8(6):480-490 [PMID: 31799205]
  10. Nat Immunol. 2011 Jun;12(6):492-9 [PMID: 21739672]
  11. Immunity. 2016 May 17;44(5):1069-78 [PMID: 27192570]
  12. Nat Rev Immunol. 2020 Feb;20(2):128-136 [PMID: 31591533]
  13. Cancer Cell. 2018 Apr 9;33(4):547-562 [PMID: 29634943]
  14. Hepatology. 2016 Dec;64(6):2038-2046 [PMID: 27359084]
  15. J Clin Invest. 2017 Aug 1;127(8):2930-2940 [PMID: 28650338]
  16. Annu Rev Immunol. 2019 Apr 26;37:457-495 [PMID: 30676822]
  17. Nat Med. 2019 Aug;25(8):1251-1259 [PMID: 31359002]
  18. Nat Rev Immunol. 2020 Jan;20(1):25-39 [PMID: 31570880]
  19. Lancet. 2017 Jun 24;389(10088):2492-2502 [PMID: 28434648]
  20. Gastroenterology. 2019 Jan;156(2):492-509 [PMID: 30404026]
  21. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7769-E7777 [PMID: 27837027]
  22. Nat Immunol. 2019 Mar;20(3):326-336 [PMID: 30778252]
  23. Oncoimmunology. 2020 Apr 5;9(1):1746573 [PMID: 32426177]
  24. Lancet Oncol. 2018 Jul;19(7):940-952 [PMID: 29875066]
  25. J Immunother Cancer. 2017 Feb 21;5:18 [PMID: 28239471]
  26. Cancers (Basel). 2019 Feb 20;11(2): [PMID: 30791580]
  27. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  28. J Hepatol. 2020 Dec;73(6):1460-1469 [PMID: 32710922]
  29. Immunity. 2019 Jan 15;50(1):195-211.e10 [PMID: 30635237]
  30. Nat Med. 2010 Oct;16(10):1147-51 [PMID: 20890291]
  31. Nat Rev Drug Discov. 2016 Apr;15(4):235-47 [PMID: 26965203]
  32. EBioMedicine. 2019 Feb;40:457-470 [PMID: 30598371]
  33. Clin Cancer Res. 2019 May 15;25(10):3074-3083 [PMID: 30635339]
  34. Clin Cancer Res. 2019 Apr 1;25(7):2116-2126 [PMID: 30373752]
  35. Sci Immunol. 2019 Nov 8;4(41): [PMID: 31704735]
  36. J Hepatol. 2020 Mar;72(3):489-497 [PMID: 31634533]
  37. Science. 2018 Oct 12;362(6411): [PMID: 30309915]
  38. Immunity. 2018 Apr 17;48(4):812-830.e14 [PMID: 29628290]
  39. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  40. Gastroenterology. 2017 Sep;153(3):812-826 [PMID: 28624577]
  41. Cell. 2016 Dec 1;167(6):1540-1554.e12 [PMID: 27912061]
  42. Cell. 2018 Apr 5;173(2):400-416.e11 [PMID: 29625055]
  43. Nature. 2020 Jan;577(7791):561-565 [PMID: 31942071]
  44. Nat Med. 2018 Jul;24(7):994-1004 [PMID: 29892065]
  45. Nature. 2017 May 4;545(7652):60-65 [PMID: 28397821]
  46. Nat Rev Immunol. 2016 Dec;16(12):741-750 [PMID: 27667712]
  47. Cell. 2017 Jun 15;169(7):1342-1356.e16 [PMID: 28622514]
  48. Mod Pathol. 2016 Nov;29(11):1370-1380 [PMID: 27469330]
  49. Clin Cancer Res. 2016 Apr 15;22(8):1856-64 [PMID: 27084739]
  50. J Immunother Cancer. 2020 Aug;8(2): [PMID: 32847986]
  51. Cell Rep. 2018 Apr 3;23(1):181-193.e7 [PMID: 29617659]
  52. JAMA Oncol. 2019 Aug 1;5(8):1195-1204 [PMID: 31318407]
  53. J Exp Med. 2015 Feb 9;212(2):139-48 [PMID: 25601652]
  54. Nature. 2015 Jul 9;523(7559):231-5 [PMID: 25970248]
  55. Immunity. 2014 Feb 20;40(2):289-302 [PMID: 24530057]
  56. Nat Med. 2018 Oct;24(10):1545-1549 [PMID: 30127394]
  57. Aging (Albany NY). 2020 Jan 8;12(1):502-517 [PMID: 31913856]