Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia.

Alex R Schuurman, Tom DY Reijnders, Anno Saris, Ivan Ramirez Moral, Michiel Schinkel, Justin de Brabander, Christine van Linge, Louis Vermeulen, Brendon P Scicluna, W Joost Wiersinga, Felipe A Vieira Braga, Tom van der Poll
Author Information
  1. Alex R Schuurman: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands. ORCID
  2. Tom DY Reijnders: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands. ORCID
  3. Anno Saris: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  4. Ivan Ramirez Moral: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  5. Michiel Schinkel: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  6. Justin de Brabander: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  7. Christine van Linge: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  8. Louis Vermeulen: Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  9. Brendon P Scicluna: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands. ORCID
  10. W Joost Wiersinga: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  11. Felipe A Vieira Braga: Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
  12. Tom van der Poll: Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

Abstract

The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns-including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups-and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.

Keywords

Associated Data

GEO | GSE164948

References

  1. Immunology. 2020 Apr;159(4):365-372 [PMID: 31792954]
  2. Nature. 2012 Mar 25;484(7395):519-23 [PMID: 22446628]
  3. JAMA Intern Med. 2020 Oct 1;180(10):1336-1344 [PMID: 32609310]
  4. Thorax. 2012 Jan;67(1):71-9 [PMID: 20729232]
  5. Sci Immunol. 2020 Jun 26;5(48): [PMID: 32591408]
  6. Nat Rev Microbiol. 2011 Oct 17;9(12):860-75 [PMID: 22002165]
  7. Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11370-11379 [PMID: 31113877]
  8. Nat Rev Nephrol. 2018 Feb;14(2):121-137 [PMID: 29225343]
  9. Ann N Y Acad Sci. 2020 Mar 23;: [PMID: 32202669]
  10. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  11. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  12. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  13. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  14. Radiology. 2021 Jan;298(1):E30-E37 [PMID: 32776832]
  15. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  16. N Engl J Med. 2015 Jul 30;373(5):415-27 [PMID: 26172429]
  17. JAMA. 2020 Aug 25;324(8):782-793 [PMID: 32648899]
  18. PLoS One. 2012;7(2):e31535 [PMID: 22363665]
  19. QJM. 2001 Oct;94(10):521-6 [PMID: 11588210]
  20. Nat Rev Immunol. 2013 Dec;13(12):862-74 [PMID: 24232462]
  21. Infect Immun. 2019 Dec 17;88(1): [PMID: 31611276]
  22. Emerg Infect Dis. 2008 Aug;14(8):1187-92 [PMID: 18680640]
  23. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  24. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  25. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  26. Immunity. 2020 Sep 15;53(3):685-696.e3 [PMID: 32783921]
  27. JAMA. 2020 May 26;323(20):2052-2059 [PMID: 32320003]
  28. Nat Methods. 2017 Sep;14(9):865-868 [PMID: 28759029]
  29. PLoS One. 2017 May 8;12(5):e0177405 [PMID: 28481945]
  30. Nat Commun. 2015 Apr 21;6:6881 [PMID: 25898173]
  31. Virus Res. 2011 Dec;162(1-2):12-8 [PMID: 22027189]
  32. Nat Commun. 2020 Jul 6;11(1):3434 [PMID: 32632085]
  33. Front Immunol. 2018 Mar 05;9:320 [PMID: 29556226]
  34. Am J Respir Crit Care Med. 2017 Apr 1;195(7):906-911 [PMID: 27649072]
  35. Cell. 2021 Apr 1;184(7):1895-1913.e19 [PMID: 33657410]
  36. Nat Rev Immunol. 2020 Sep;20(9):529-536 [PMID: 32728222]
  37. Nat Rev Immunol. 2017 Jul;17(7):407-420 [PMID: 28436424]
  38. PLoS One. 2011;6(9):e25060 [PMID: 21966414]
  39. J Virol. 2012 Dec;86(24):13445-55 [PMID: 23015724]
  40. PLoS One. 2012;7(1):e29443 [PMID: 22238612]
  41. Front Immunol. 2018 Nov 20;9:2692 [PMID: 30515169]
  42. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6686-6696 [PMID: 32161126]
  43. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  44. Front Immunol. 2018 Apr 09;9:678 [PMID: 29686673]
  45. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  46. Sci Signal. 2019 Oct 29;12(605): [PMID: 31662487]
  47. Respir Res. 2019 May 2;20(1):82 [PMID: 31046764]
  48. Immunity. 2015 Feb 17;42(2):216-226 [PMID: 25692699]
  49. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  50. Sci Immunol. 2020 Jul 15;5(49): [PMID: 32669287]
  51. Front Immunol. 2020 Jun 23;11:1512 [PMID: 32655581]
  52. Cell Rep Med. 2020 Sep 22;1(6):100081 [PMID: 32839763]
  53. Front Immunol. 2018 Jul 30;9:1726 [PMID: 30105020]
  54. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

Grants

  1. 16447/NWO
  2. 847786/European Commission
  3. Corona Research Fund/AMC

MeSH Term

Humans
Single-Cell Analysis
COVID-19
Community-Acquired Infections
Influenza, Human
Male
Female
SARS-CoV-2
Middle Aged
Aged
Leukocytes, Mononuclear
Proteomics
Transcriptome
Adult
Pneumonia