Profound Treg perturbations correlate with COVID-19 severity.

Silvia Galván-Peña, Juliette Leon, Kaitavjeet Chowdhary, Daniel A Michelson, Brinda Vijaykumar, Liang Yang, Angela M Magnuson, Felicia Chen, Zachary Manickas-Hill, Alicja Piechocka-Trocha, Daniel P Worrall, Kathryn E Hall, Musie Ghebremichael, Bruce D Walker, Jonathan Z Li, Xu G Yu, MGH COVID-19 Collection & Processing Team, Diane Mathis, Christophe Benoist
Author Information
  1. Silvia Galván-Peña: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  2. Juliette Leon: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  3. Kaitavjeet Chowdhary: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  4. Daniel A Michelson: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  5. Brinda Vijaykumar: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  6. Liang Yang: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  7. Angela M Magnuson: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  8. Felicia Chen: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  9. Zachary Manickas-Hill: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  10. Alicja Piechocka-Trocha: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  11. Daniel P Worrall: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  12. Kathryn E Hall: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  13. Musie Ghebremichael: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  14. Bruce D Walker: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115. ORCID
  15. Jonathan Z Li: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115. ORCID
  16. Xu G Yu: Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115.
  17. Diane Mathis: Department of Immunology, Harvard Medical School, Boston, MA 02115.
  18. Christophe Benoist: Department of Immunology, Harvard Medical School, Boston, MA 02115; cbdm@hms.harvard.edu.

Abstract

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3 T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.

Keywords

References

  1. Clin Transl Immunology. 2020 Nov 13;9(11):e1204 [PMID: 33209300]
  2. Nature. 2021 Mar;591(7851):645-651 [PMID: 33589820]
  3. Annu Rev Immunol. 2016 May 20;34:609-33 [PMID: 27168246]
  4. Front Immunol. 2019 Jun 07;10:1197 [PMID: 31231372]
  5. PLoS Pathog. 2017 Aug 10;13(8):e1006507 [PMID: 28796839]
  6. Nat Immunol. 2021 May;22(5):607-619 [PMID: 33833438]
  7. Immunity. 2016 Nov 15;45(5):1122-1134 [PMID: 27851913]
  8. Nature. 2011 Jul 13;475(7355):226-30 [PMID: 21753853]
  9. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  10. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  11. Nature. 2018 Feb 15;554(7692):373-377 [PMID: 29414937]
  12. Immunity. 2021 Jun 8;54(6):1186-1199.e7 [PMID: 33915108]
  13. J Exp Med. 2020 Sep 7;217(9): [PMID: 32515782]
  14. Tumour Biol. 2016 Sep;37(9):11553-11572 [PMID: 27260630]
  15. Cell. 2013 Dec 5;155(6):1282-95 [PMID: 24315098]
  16. Science. 2015 Aug 28;349(6251):989-93 [PMID: 26160380]
  17. Nat Rev Immunol. 2008 Jul;8(7):523-32 [PMID: 18566595]
  18. Nature. 2006 May 11;441(7090):235-8 [PMID: 16648838]
  19. Annu Rev Immunol. 2012;30:531-64 [PMID: 22224781]
  20. Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):E1111-20 [PMID: 24610777]
  21. Semin Immunol. 2018 Aug;38:24-32 [PMID: 29747940]
  22. Mucosal Immunol. 2015 Nov;8(6):1226-36 [PMID: 25736457]
  23. Science. 2008 May 30;320(5880):1220-4 [PMID: 18436744]
  24. Nat Med. 2011 Jul 24;17(8):983-8 [PMID: 21785430]
  25. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  26. Immunity. 2013 Aug 22;39(2):298-310 [PMID: 23954131]
  27. J Am Soc Nephrol. 2019 Aug;30(8):1439-1453 [PMID: 31311828]
  28. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10672-E10681 [PMID: 30348759]
  29. Nat Commun. 2021 May 11;12(1):2710 [PMID: 33976194]
  30. Respir Res. 2020 Jul 28;21(1):198 [PMID: 32723327]
  31. Front Immunol. 2019 Feb 27;10:333 [PMID: 30873179]
  32. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  33. Cell. 2015 Aug 27;162(5):1078-89 [PMID: 26317471]
  34. Immunity. 2016 Nov 15;45(5):1135-1147 [PMID: 27851914]
  35. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  36. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  37. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  38. Front Immunol. 2019 Jul 31;10:1818 [PMID: 31417576]
  39. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  40. J Immunol. 2011 Jan 1;186(1):32-40 [PMID: 21106853]
  41. Nat Immunol. 2011 Jan;12(1):86-95 [PMID: 21131965]
  42. Cell. 2017 Jun 1;169(6):1130-1141.e11 [PMID: 28552348]
  43. Am J Respir Crit Care Med. 2020 Sep 15;202(6):812-821 [PMID: 32584597]
  44. Elife. 2020 Jul 20;9: [PMID: 32687059]
  45. Viruses. 2015 Jun 16;7(6):3116-29 [PMID: 26087456]
  46. Nat Med. 2020 Oct;26(10):1636-1643 [PMID: 32839624]
  47. Nat Med. 2011 Jul 24;17(8):975-82 [PMID: 21785433]
  48. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  49. Science. 2015 Aug 28;349(6251):993-7 [PMID: 26272906]
  50. Nat Immunol. 2011 Apr;12(4):304-11 [PMID: 21378976]

Grants

  1. P30 AI060354/NIAID NIH HHS
  2. R01 AI150686/NIAID NIH HHS
  3. R24 AI072073/NIAID NIH HHS
  4. T32 GM007753/NIGMS NIH HHS

MeSH Term

Adult
Aged
CD4-Positive T-Lymphocytes
COVID-19
Female
Forkhead Transcription Factors
Gene Expression Profiling
Gene Expression Regulation
Humans
Inflammation
Interleukin-18
Interleukin-2 Receptor alpha Subunit
Interleukin-6
Lymphocytes, Tumor-Infiltrating
Male
Middle Aged
Severity of Illness Index
T-Lymphocytes, Regulatory
Transcription Factors

Chemicals

FOXP3 protein, human
Forkhead Transcription Factors
IL18 protein, human
IL2RA protein, human
IL6 protein, human
Interleukin-18
Interleukin-2 Receptor alpha Subunit
Interleukin-6
Transcription Factors