Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS.

Aartik Sarma, Stephanie A Christenson, Ashley Byrne, Eran Mick, Angela Oliveira Pisco, Catherine DeVoe, Thomas Deiss, Rajani Ghale, Beth Shoshana Zha, Alexandra Tsitsiklis, Alejandra Jauregui, Farzad Moazed, Angela M Detweiler, Natasha Spottiswoode, Pratik Sinha, Norma Neff, Michelle Tan, Paula Hayakawa Serpa, Andrew Willmore, K Mark Ansel, Jennifer G Wilson, Aleksandra Leligdowicz, Emily R Siegel, Marina Sirota, Joseph L DeRisi, Michael A Matthay, COMET Consortium, Carolyn M Hendrickson, Kirsten N Kangelaris, Matthew F Krummel, Prescott G Woodruff, David J Erle, Carolyn S Calfee, Charles R Langelier
Author Information
  1. Aartik Sarma: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA. ORCID
  2. Stephanie A Christenson: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  3. Ashley Byrne: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  4. Eran Mick: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA. ORCID
  5. Angela Oliveira Pisco: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  6. Catherine DeVoe: Division of Infectious Diseases, University of California, San Francisco, CA, USA.
  7. Thomas Deiss: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  8. Rajani Ghale: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  9. Beth Shoshana Zha: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  10. Alexandra Tsitsiklis: Division of Infectious Diseases, University of California, San Francisco, CA, USA. ORCID
  11. Alejandra Jauregui: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  12. Farzad Moazed: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  13. Angela M Detweiler: Division of Infectious Diseases, University of California, San Francisco, CA, USA.
  14. Natasha Spottiswoode: Department of Medicine, University of California, San Francisco, CA, USA.
  15. Pratik Sinha: Department of Anesthesia, Washington University, Saint Louis, MO, USA.
  16. Norma Neff: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  17. Michelle Tan: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  18. Paula Hayakawa Serpa: Division of Infectious Diseases, University of California, San Francisco, CA, USA.
  19. Andrew Willmore: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  20. K Mark Ansel: Department of Microbiology and Immunology, University of California, San Francisco, CA, USA. ORCID
  21. Jennifer G Wilson: Department of Emergency Medicine, Stanford University, Palo Alto, CA, USA.
  22. Aleksandra Leligdowicz: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  23. Emily R Siegel: School of Medicine, University of California, San Francisco, CA, USA.
  24. Marina Sirota: Division of Rheumatology, University of California, San Francisco, CA, USA.
  25. Joseph L DeRisi: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  26. Michael A Matthay: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA. ORCID
  27. Carolyn M Hendrickson: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  28. Kirsten N Kangelaris: Department of Medicine, University of California, San Francisco, CA, USA.
  29. Matthew F Krummel: Department of Pathology, University of California, San Francisco, CA, USA.
  30. Prescott G Woodruff: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  31. David J Erle: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA. ORCID
  32. Carolyn S Calfee: Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA.
  33. Charles R Langelier: Chan Zuckerberg Biohub, San Francisco, CA, USA. chaz.langelier@ucsf.edu. ORCID

Abstract

The immunological features that distinguish COVID-19-associated acute respiratory distress syndrome (ARDS) from other causes of ARDS are incompletely understood. Here, we report the results of comparative lower respiratory tract transcriptional profiling of tracheal aspirate from 52 critically ill patients with ARDS from COVID-19 or from other etiologies, as well as controls without ARDS. In contrast to a "cytokine storm," we observe reduced proinflammatory gene expression in COVID-19 ARDS when compared to ARDS due to other causes. COVID-19 ARDS is characterized by a dysregulated host response with increased PTEN signaling and elevated expression of genes with non-canonical roles in inflammation and immunity. In silico analysis of gene expression identifies several candidate drugs that may modulate gene expression in COVID-19 ARDS, including dexamethasone and granulocyte colony stimulating factor. Compared to ARDS due to other types of viral pneumonia, COVID-19 is characterized by impaired interferon-stimulated gene (ISG) expression. The relationship between SARS-CoV-2 viral load and expression of ISGs is decoupled in patients with COVID-19 ARDS when compared to patients with mild COVID-19. In summary, assessment of host gene expression in the lower airways of patients reveals distinct immunological features of COVID-19 ARDS.

References

  1. N Engl J Med. 2021 Apr 22;384(16):1491-1502 [PMID: 33631065]
  2. Sci Adv. 2020 Dec 9;6(50): [PMID: 33187979]
  3. Genes Dev. 2003 Jul 1;17(13):1592-604 [PMID: 12842911]
  4. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  5. Sci Rep. 2015 Oct 21;5:15529 [PMID: 26487326]
  6. BMC Biotechnol. 2016 Jun 24;16(1):54 [PMID: 27342544]
  7. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  8. Biochem Biophys Res Commun. 2018 Feb 5;496(2):778-783 [PMID: 29217193]
  9. Am J Infect Control. 2008 Jun;36(5):309-32 [PMID: 18538699]
  10. Blood. 2008 Mar 15;111(6):3062-9 [PMID: 17993619]
  11. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  12. N Engl J Med. 2021 Feb 25;384(8):693-704 [PMID: 32678530]
  13. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  14. Lancet Respir Med. 2021 Jun;9(6):655-664 [PMID: 33930329]
  15. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  16. JCI Insight. 2019 Oct 17;4(20): [PMID: 31619589]
  17. Am J Respir Crit Care Med. 2005 Feb 15;171(4):388-416 [PMID: 15699079]
  18. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  19. JAMA Intern Med. 2021 Jan 1;181(1):71-78 [PMID: 32910179]
  20. Cell Res. 2021 Mar;31(3):272-290 [PMID: 33473155]
  21. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  22. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  23. Cell. 2020 Nov 25;183(5):1354-1366.e13 [PMID: 33065030]
  24. Nat Methods. 2016 Jul;13(7):577-80 [PMID: 27240256]
  25. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  26. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  27. J Immunol. 2008 May 1;180(9):5771-7 [PMID: 18424693]
  28. Bioinformatics. 2019 Jun 1;35(12):2084-2092 [PMID: 30395178]
  29. JAMA Intern Med. 2020 Sep 1;180(9):1152-1154 [PMID: 32602883]
  30. Cell Mol Immunol. 2017 Jul;14(7):581-589 [PMID: 28603282]
  31. Bioinformatics. 2014 Feb 15;30(4):523-30 [PMID: 24336805]
  32. JAKSTAT. 2013 Jan 1;2(1):e24198 [PMID: 24058801]
  33. Purinergic Signal. 2016 Dec;12(4):627-635 [PMID: 27421735]
  34. JCI Insight. 2020 Sep 3;5(17): [PMID: 32706339]
  35. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  36. Nat Commun. 2020 Nov 17;11(1):5854 [PMID: 33203890]
  37. JAMA. 2012 Jun 20;307(23):2526-33 [PMID: 22797452]
  38. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  39. J Biomed Inform. 2019 Jul;95:103208 [PMID: 31078660]
  40. Nat Rev Dis Primers. 2019 Mar 14;5(1):18 [PMID: 30872586]
  41. Nature. 2021 Feb;590(7847):635-641 [PMID: 33429418]
  42. Lancet Respir Med. 2020 Dec;8(12):1233-1244 [PMID: 33075298]
  43. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  44. Immunity. 2021 Apr 13;54(4):753-768.e5 [PMID: 33765435]
  45. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  46. Immunol Res. 2015 May;62(1):95-105 [PMID: 25759027]
  47. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  48. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  49. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11 [PMID: 19465376]
  50. J Immunol. 2010 Jul 1;185(1):468-76 [PMID: 20505137]

Grants

  1. R35 HL140026/NHLBI NIH HHS
  2. K24 HL137013/NHLBI NIH HHS
  3. K23 HL133495/NHLBI NIH HHS
  4. K23 HL138461/NHLBI NIH HHS
  5. F32 HL151117/NHLBI NIH HHS
  6. U19 AI077439/NIAID NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
COVID-19
Case-Control Studies
Cohort Studies
Critical Illness
Cytokines
Female
Gene Expression Profiling
Humans
Male
Middle Aged
RNA
Respiratory Distress Syndrome
SARS-CoV-2
Sequence Analysis, RNA
Trachea

Chemicals

Cytokines
RNA