Attenuated activation of pulmonary immune cells in mRNA-1273-vaccinated hamsters after SARS-CoV-2 infection.

Michelle Meyer, Yuan Wang, Darin Edwards, Gregory R Smith, Aliza B Rubenstein, Palaniappan Ramanathan, Chad E Mire, Colette Pietzsch, Xi Chen, Yongchao Ge, Wan Sze Cheng, Carole Henry, Angela Woods, LingZhi Ma, Guillaume Be Stewart-Jones, Kevin W Bock, Mahnaz Minai, Bianca M Nagata, Sivakumar Periasamy, Pei-Yong Shi, Barney S Graham, Ian N Moore, Irene Ramos, Olga G Troyanskaya, Elena Zaslavsky, Andrea Carfi, Stuart C Sealfon, Alexander Bukreyev
Author Information
  1. Michelle Meyer: Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
  2. Yuan Wang: Department of Computer Science and.
  3. Darin Edwards: Moderna Inc., Cambridge, Massachusetts, USA.
  4. Gregory R Smith: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  5. Aliza B Rubenstein: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  6. Palaniappan Ramanathan: Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
  7. Chad E Mire: Galveston National Laboratory, Galveston, Texas, USA.
  8. Colette Pietzsch: Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
  9. Xi Chen: Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, USA.
  10. Yongchao Ge: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  11. Wan Sze Cheng: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  12. Carole Henry: Moderna Inc., Cambridge, Massachusetts, USA.
  13. Angela Woods: Moderna Inc., Cambridge, Massachusetts, USA.
  14. LingZhi Ma: Moderna Inc., Cambridge, Massachusetts, USA.
  15. Guillaume Be Stewart-Jones: Moderna Inc., Cambridge, Massachusetts, USA.
  16. Kevin W Bock: Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.
  17. Mahnaz Minai: Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.
  18. Bianca M Nagata: Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.
  19. Sivakumar Periasamy: Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
  20. Pei-Yong Shi: Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA.
  21. Barney S Graham: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
  22. Ian N Moore: Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA.
  23. Irene Ramos: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  24. Olga G Troyanskaya: Department of Computer Science and.
  25. Elena Zaslavsky: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  26. Andrea Carfi: Moderna Inc., Cambridge, Massachusetts, USA.
  27. Stuart C Sealfon: Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  28. Alexander Bukreyev: Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.

Abstract

The mRNA-1273 vaccine is effective against SARS-CoV-2 and was granted emergency use authorization by the FDA. Clinical studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibits severe SARS-CoV-2 disease similar to that in hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and nonhuman primates, low-level virus replication in mRNA-1273-vaccinated hamsters coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high-resolution analysis that is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a 2-dose schedule and provide insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.

Keywords

References

  1. Methods Mol Biol. 2019;1935:91-96 [PMID: 30758821]
  2. Clin Infect Dis. 2020 Dec 3;71(9):2428-2446 [PMID: 32215622]
  3. J Infect Dis. 2021 Jun 4;223(11):1842-1854 [PMID: 33837392]
  4. Signal Transduct Target Ther. 2020 Mar 27;5(1):33 [PMID: 32296069]
  5. Immunity. 2019 May 21;50(5):1317-1334.e10 [PMID: 30979687]
  6. Mucosal Immunol. 2018 May;11(3):654-667 [PMID: 29139478]
  7. Nature. 2019 Oct;574(7778):365-371 [PMID: 31597962]
  8. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  9. J Exp Med. 2017 Feb;214(2):381-400 [PMID: 28115575]
  10. Nat Genet. 2015 Jun;47(6):569-76 [PMID: 25915600]
  11. N Engl J Med. 2020 Oct 15;383(16):1544-1555 [PMID: 32722908]
  12. Nat Commun. 2022 Jan 21;13(1):440 [PMID: 35064122]
  13. Nat Commun. 2019 Sep 2;10(1):3931 [PMID: 31477722]
  14. J Immunol. 2012 Sep 1;189(5):2393-403 [PMID: 22851713]
  15. J Immunol. 2009 Apr 1;182(7):4046-55 [PMID: 19299702]
  16. Nat Immunol. 2021 Jan;22(1):86-98 [PMID: 33235385]
  17. Nature. 2020 Oct;586(7830):567-571 [PMID: 32756549]
  18. J Immunol. 2007 Jun 1;178(11):6689-94 [PMID: 17513711]
  19. Cytokine. 2018 Jan;101:39-47 [PMID: 27623349]
  20. N Engl J Med. 2020 Nov 12;383(20):1920-1931 [PMID: 32663912]
  21. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  22. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  23. Commun Biol. 2019 Nov 13;2:411 [PMID: 31754641]
  24. Sci Immunol. 2020 Aug 21;5(50): [PMID: 32826343]
  25. Sci Immunol. 2019 Mar 15;4(33): [PMID: 30877143]
  26. Sci Transl Med. 2021 Jan 27;13(578): [PMID: 33431511]
  27. Nat Commun. 2019 Oct 17;10(1):4706 [PMID: 31624246]
  28. Vaccine. 2019 May 31;37(25):3326-3334 [PMID: 31079849]
  29. Nat Rev Mol Cell Biol. 2005 Jun;6(6):439-48 [PMID: 15928708]
  30. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  31. Front Microbiol. 2020 Oct 16;11:603509 [PMID: 33178176]
  32. Immunity. 2019 Jul 16;51(1):169-184.e5 [PMID: 31231035]
  33. J Immunol. 2015 Jan 1;194(1):125-133 [PMID: 25404365]
  34. Nature. 2020 Jul;583(7818):834-838 [PMID: 32408338]
  35. Nat Methods. 2018 Apr;15(4):255-261 [PMID: 29481549]
  36. Nat Commun. 2020 Apr 14;11(1):1801 [PMID: 32286271]
  37. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  38. N Engl J Med. 2020 Dec 17;383(25):2451-2460 [PMID: 32412710]
  39. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  40. Front Genet. 2020 Jan 17;10:1331 [PMID: 32010190]
  41. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16587-16595 [PMID: 32571934]
  42. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  43. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  44. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  45. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  46. J Immunol. 2009 Jan 15;182(2):871-9 [PMID: 19124730]
  47. N Engl J Med. 2020 Dec 17;383(25):2427-2438 [PMID: 32991794]
  48. Cell Host Microbe. 2020 May 13;27(5):704-709.e2 [PMID: 32259477]
  49. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  50. Science. 2020 May 29;368(6494):1012-1015 [PMID: 32303590]
  51. Science. 2020 May 29;368(6494):1016-1020 [PMID: 32269068]
  52. Nature. 2020 Oct;586(7830):560-566 [PMID: 32854108]
  53. Nat Med. 2020 Nov;26(11):1694-1700 [PMID: 32884153]
  54. J Infect Dis. 2018 Jan 17;217(3):451-455 [PMID: 29281112]
  55. Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2 [PMID: 32407669]
  56. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  57. JCI Insight. 2020 Jul 9;5(13): [PMID: 32554932]
  58. Blood. 2007 Feb 1;109(3):1131-7 [PMID: 16985170]
  59. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  60. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  61. Immunity. 2020 Oct 13;53(4):864-877.e5 [PMID: 32791036]
  62. Cell Rep. 2021 Mar 30;34(13):108943 [PMID: 33789116]
  63. Nat Immunol. 2014 Dec;15(12):1152-61 [PMID: 25362489]
  64. Hum Vaccin Immunother. 2021 May 4;17(5):1248-1261 [PMID: 33121346]
  65. Nature. 2020 Sep;585(7824):268-272 [PMID: 32396922]
  66. Front Immunol. 2020 Feb 07;11:135 [PMID: 32117282]
  67. J Exp Med. 2010 Mar 15;207(3):521-34 [PMID: 20212069]
  68. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  69. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  70. Nat Commun. 2012;3:1268 [PMID: 23232398]
  71. J Immunol. 2010 Apr 15;184(8):4440-6 [PMID: 20220091]
  72. Cell. 2018 Aug 23;174(5):1247-1263.e15 [PMID: 30078710]
  73. Nat Immunol. 2020 Nov;21(11):1327-1335 [PMID: 32839612]
  74. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

MeSH Term

2019-nCoV Vaccine mRNA-1273
Animals
Antibodies, Neutralizing
Antibodies, Viral
COVID-19
COVID-19 Vaccines
Disease Models, Animal
Female
Humans
Immunization, Secondary
Lung
Lymphocyte Activation
Mesocricetus
SARS-CoV-2
Single-Cell Analysis
Virus Replication

Chemicals

Antibodies, Neutralizing
Antibodies, Viral
COVID-19 Vaccines
2019-nCoV Vaccine mRNA-1273