Analysis of Bulk RNA Sequencing Data Reveals Novel Transcription Factors Associated With Immune Infiltration Among Multiple Cancers.

Lei Liu, Qiuchen Zhao, Chao Cheng, Jingwen Yi, Hongyan Sun, Qi Wang, Weili Quan, Yaqiang Xue, Luguo Sun, Xianling Cong, Yi Zhang
Author Information
  1. Lei Liu: National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
  2. Qiuchen Zhao: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.
  3. Chao Cheng: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.
  4. Jingwen Yi: Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China.
  5. Hongyan Sun: Tissue Bank, China-Japan Union Hospital, Jilin University, Changchun, China.
  6. Qi Wang: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.
  7. Weili Quan: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.
  8. Yaqiang Xue: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.
  9. Luguo Sun: National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
  10. Xianling Cong: Tissue Bank, China-Japan Union Hospital, Jilin University, Changchun, China.
  11. Yi Zhang: Center of Genome Analysis, ABLife BioBigData Institute, Wuhan, China.

Abstract

Tumor-infiltrating immune cells shape the tumor microenvironment and are closely related to clinical outcomes. Several transcription factors (TFs) have also been reported to regulate the antitumor activity and immune cell infiltration. This study aimed to quantify the populations of different immune cells infiltrated in tumor samples based on the bulk RNA sequencing data obtained from 50 cancer patients using the CIBERSORT and the EPIC algorithm. Weighted gene coexpression network analysis (WGCNA) identified eigengene modules strongly associated with tumorigenesis and the activation of CD4+ memory T cells, dendritic cells, and macrophages. TF genes , , , and are central in the subnetworks of the eigengene modules associated with immune-related genes. The analysis of The Cancer Genome Atlas (TCGA) cancer data confirmed these findings and further showed that the expression of these potential TF genes regulating immune infiltration, and the immune-related genes that they regulated, was associated with the survival of patients within multiple cancers. Exome-seq was performed on 24 paired samples that also had RNA-seq data. The expression quantitative trait loci (eQTL) analysis showed that mutations were significantly more frequent in the regions flanking the TF genes compared with those of non-TF genes, suggesting a driver role of these TF genes regulating immune infiltration. Taken together, this study presented a practical method for identifying genes that regulate immune infiltration. These genes could be potential biomarkers for cancer prognosis and possible therapeutic targets.

Keywords

References

  1. Cancer Cell. 2006 Jan;9(1):23-32 [PMID: 16413469]
  2. Theranostics. 2020 Aug 25;10(23):10619-10633 [PMID: 32929370]
  3. EBioMedicine. 2019 Jan;39:226-238 [PMID: 30579865]
  4. Lung Cancer. 2018 Apr;118:62-68 [PMID: 29572005]
  5. Int J Cancer. 2013 Mar 15;132(6):1341-50 [PMID: 22907255]
  6. PLoS Genet. 2012;8(3):e1002599 [PMID: 22457641]
  7. Immunity. 2014 Jul 17;41(1):14-20 [PMID: 25035950]
  8. Nat Rev Drug Discov. 2019 Mar;18(3):197-218 [PMID: 30610226]
  9. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  10. Cell Discov. 2020 Oct 20;6:73 [PMID: 33101705]
  11. PeerJ. 2020 Apr 24;8:e8970 [PMID: 32355576]
  12. Elife. 2017 Nov 13;6: [PMID: 29130882]
  13. Cancers (Basel). 2020 Oct 30;12(11): [PMID: 33143070]
  14. J Immunol. 1999 Sep 1;163(5):2688-96 [PMID: 10453010]
  15. Mol Oncol. 2019 Apr;13(4):873-893 [PMID: 30628173]
  16. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102 [PMID: 28407145]
  17. Nat Rev Cancer. 2012 Mar 22;12(4):265-77 [PMID: 22437871]
  18. J Pathol. 2013 Jan;229(2):176-85 [PMID: 23096265]
  19. Science. 2006 Sep 29;313(5795):1960-4 [PMID: 17008531]
  20. Biomed Pharmacother. 2019 Oct;118:109228 [PMID: 31351430]
  21. Arch Pathol Lab Med. 2020 Jun;144(6):706-724 [PMID: 31714809]
  22. Genome Res. 2018 Nov;28(11):1747-1756 [PMID: 30341162]
  23. Cancer Med. 2018 Sep;7(9):4496-4508 [PMID: 30117315]
  24. J Invest Dermatol. 2008 Mar;128(3):676-84 [PMID: 17851585]
  25. Klin Onkol. 2018 Fall;31(6):421-428 [PMID: 30545222]
  26. Cell Mol Gastroenterol Hepatol. 2020;9(3):425-446 [PMID: 31669262]
  27. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  28. Bioinformatics. 2012 May 15;28(10):1353-8 [PMID: 22492648]
  29. Elife. 2014 Nov 21;3:e03881 [PMID: 25415051]
  30. Methods Mol Biol. 2020;2120:233-248 [PMID: 32124324]
  31. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  32. Microbes Infect. 2001 Jul;3(8):639-44 [PMID: 11445450]
  33. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  34. Immunol Rev. 2017 Nov;280(1):93-101 [PMID: 29027233]
  35. Nat Rev Clin Oncol. 2017 Dec;14(12):717-734 [PMID: 28741618]
  36. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  37. Cell Death Dis. 2017 Jun 22;8(6):e2895 [PMID: 28640249]
  38. JCI Insight. 2016 Sep 22;1(15):e88843 [PMID: 27699251]
  39. Immunity. 2020 Jun 16;52(6):1075-1087.e8 [PMID: 32445619]
  40. J Cell Physiol. 2018 Sep;233(9):6425-6440 [PMID: 29319160]
  41. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  42. Nat Rev Cancer. 2018 Feb;18(2):89-102 [PMID: 29242642]
  43. Cancer Lett. 2018 Feb 28;415:117-128 [PMID: 29222039]
  44. Nature. 2017 Aug 24;548(7668):471-475 [PMID: 28813415]
  45. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  46. Oncotarget. 2018 Apr 3;9(25):17501-17511 [PMID: 29707124]
  47. Trends Immunol. 2020 Jul;41(7):601-613 [PMID: 32446878]
  48. Mucosal Immunol. 2010 Nov;3(6):567-77 [PMID: 20844482]
  49. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  50. Cancer. 2018 Jan 1;124(1):65-73 [PMID: 28940304]
  51. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  52. Genome Biol. 2016 Aug 22;17(1):174 [PMID: 27549193]
  53. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  54. Cancer Res. 2020 Feb 1;80(3):382-393 [PMID: 31784426]
  55. Br J Cancer. 2013 Jan 15;108(1):155-62 [PMID: 23169287]
  56. Gastroenterology. 2011 Jan;140(1):310-21 [PMID: 20955708]
  57. J Immunol. 2001 Jan 15;166(2):926-35 [PMID: 11145669]
  58. Inflamm Res. 2017 Nov;66(11):969-980 [PMID: 28669029]
  59. Nat Genet. 2005 Apr;37(4):407-12 [PMID: 15750593]
  60. Sci Transl Med. 2018 Sep 19;10(459): [PMID: 30232229]
  61. Aging (Albany NY). 2020 Feb 21;12(4):3807-3827 [PMID: 32084007]
  62. Methods Mol Biol. 2020;2120:223-232 [PMID: 32124323]

MeSH Term

Biomarkers, Tumor
CD4-Positive T-Lymphocytes
Dendritic Cells
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Humans
Immune System
Macrophages
Mutation
Neoplasms
Prognosis
Sequence Analysis, RNA
Transcription Factors
Tumor Microenvironment

Chemicals

Biomarkers, Tumor
Transcription Factors