Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice.

Neil C Dalvie, Sergio A Rodriguez-Aponte, Brittany L Hartwell, Lisa H Tostanoski, Andrew M Biedermann, Laura E Crowell, Kawaljit Kaur, Ozan S Kumru, Lauren Carter, Jingyou Yu, Aiquan Chang, Katherine McMahan, Thomas Courant, Celia Lebas, Ashley A Lemnios, Kristen A Rodrigues, Murillo Silva, Ryan S Johnston, Christopher A Naranjo, Mary Kate Tracey, Joseph R Brady, Charles A Whittaker, Dongsoo Yun, Natalie Brunette, Jing Yang Wang, Carl Walkey, Brooke Fiala, Swagata Kar, Maciel Porto, Megan Lok, Hanne Andersen, Mark G Lewis, Kerry R Love, Danielle L Camp, Judith Maxwell Silverman, Harry Kleanthous, Sangeeta B Joshi, David B Volkin, Patrice M Dubois, Nicolas Collin, Neil P King, Dan H Barouch, Darrell J Irvine, J Christopher Love
Author Information
  1. Neil C Dalvie: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139. ORCID
  2. Sergio A Rodriguez-Aponte: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  3. Brittany L Hartwell: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  4. Lisa H Tostanoski: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115. ORCID
  5. Andrew M Biedermann: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139.
  6. Laura E Crowell: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139.
  7. Kawaljit Kaur: Department of Pharmaceutical Chemistry, Vaccine Analytics, and Formulation Center, University of Kansas, Lawrence, KS 66047.
  8. Ozan S Kumru: Department of Pharmaceutical Chemistry, Vaccine Analytics, and Formulation Center, University of Kansas, Lawrence, KS 66047.
  9. Lauren Carter: Department of Biochemistry, University of Washington, Seattle, WA 98195.
  10. Jingyou Yu: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115.
  11. Aiquan Chang: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115. ORCID
  12. Katherine McMahan: Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115.
  13. Thomas Courant: Vaccine Formulation Institute, 1228 Plan-Les-Ouates, Geneva, Switzerland.
  14. Celia Lebas: Vaccine Formulation Institute, 1228 Plan-Les-Ouates, Geneva, Switzerland.
  15. Ashley A Lemnios: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID
  16. Kristen A Rodrigues: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID
  17. Murillo Silva: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  18. Ryan S Johnston: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  19. Christopher A Naranjo: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  20. Mary Kate Tracey: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  21. Joseph R Brady: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139. ORCID
  22. Charles A Whittaker: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID
  23. Dongsoo Yun: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  24. Natalie Brunette: Department of Biochemistry, University of Washington, Seattle, WA 98195.
  25. Jing Yang Wang: Department of Biochemistry, University of Washington, Seattle, WA 98195. ORCID
  26. Carl Walkey: Department of Biochemistry, University of Washington, Seattle, WA 98195.
  27. Brooke Fiala: Department of Biochemistry, University of Washington, Seattle, WA 98195. ORCID
  28. Swagata Kar: Bioqual, Inc., Rockville, MD 20850.
  29. Maciel Porto: Bioqual, Inc., Rockville, MD 20850.
  30. Megan Lok: Bioqual, Inc., Rockville, MD 20850.
  31. Hanne Andersen: Bioqual, Inc., Rockville, MD 20850.
  32. Mark G Lewis: Bioqual, Inc., Rockville, MD 20850. ORCID
  33. Kerry R Love: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139.
  34. Danielle L Camp: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
  35. Judith Maxwell Silverman: Bill & Melinda Gates Medical Research Institute, Cambridge, MA 02139.
  36. Harry Kleanthous: Bill & Melinda Gates Foundation, Seattle, WA 98109.
  37. Sangeeta B Joshi: Department of Pharmaceutical Chemistry, Vaccine Analytics, and Formulation Center, University of Kansas, Lawrence, KS 66047.
  38. David B Volkin: Department of Pharmaceutical Chemistry, Vaccine Analytics, and Formulation Center, University of Kansas, Lawrence, KS 66047.
  39. Patrice M Dubois: Vaccine Formulation Institute, 1228 Plan-Les-Ouates, Geneva, Switzerland. ORCID
  40. Nicolas Collin: Vaccine Formulation Institute, 1228 Plan-Les-Ouates, Geneva, Switzerland.
  41. Neil P King: Department of Biochemistry, University of Washington, Seattle, WA 98195.
  42. Dan H Barouch: Ragon Institute of Massachusetts General Hospital (MGH), MIT, Harvard, Cambridge, MA 02139.
  43. Darrell J Irvine: The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139. ORCID
  44. J Christopher Love: Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139; clove@mit.edu. ORCID

Abstract

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

Keywords

References

  1. J Immunol Res. 2019 Apr 7;2019:6491738 [PMID: 31089478]
  2. Biotechnol Prog. 2020 May;36(3):e2966 [PMID: 31960616]
  3. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  4. J Virol. 2021 Jun 24;95(14):e0040421 [PMID: 33893169]
  5. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  6. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  7. N Engl J Med. 2021 May 20;384(20):1899-1909 [PMID: 33951374]
  8. N Engl J Med. 2020 Dec 31;383(27):2603-2615 [PMID: 33301246]
  9. Lancet Respir Med. 2021 Apr;9(4):333-335 [PMID: 33524316]
  10. Emerg Microbes Infect. 2020 Dec;9(1):382-385 [PMID: 32065055]
  11. Biotechnol Bioeng. 2020 Feb;117(2):543-555 [PMID: 31654411]
  12. Nat Commun. 2021 Mar 3;12(1):1403 [PMID: 33658497]
  13. Biotechnol Bioeng. 2021 Sep;118(9):3348-3358 [PMID: 33624832]
  14. Hum Vaccin Immunother. 2021 Aug 3;17(8):2356-2366 [PMID: 33847226]
  15. Appl Microbiol Biotechnol. 2015 Apr;99(7):2925-38 [PMID: 25722021]
  16. Cell. 2020 Nov 25;183(5):1367-1382.e17 [PMID: 33160446]
  17. Microb Cell Fact. 2021 May 1;20(1):94 [PMID: 33933073]
  18. Vaccine. 2020 Nov 25;38(50):7892-7896 [PMID: 33139139]
  19. ACS Synth Biol. 2020 Jan 17;9(1):26-35 [PMID: 31825599]
  20. Cell. 2021 Apr 29;184(9):2316-2331.e15 [PMID: 33773105]
  21. Science. 2021 Feb 12;371(6530):735-741 [PMID: 33436524]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  24. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272677]
  25. Nat Commun. 2015 Jul 28;6:7712 [PMID: 26218507]
  26. Nature. 2020 Oct;586(7830):572-577 [PMID: 32726802]
  27. Cell Host Microbe. 2021 Mar 10;29(3):463-476.e6 [PMID: 33592168]
  28. N Engl J Med. 2015 May 28;372(22):2087-96 [PMID: 25916341]
  29. Cell. 2021 Apr 15;184(8):2183-2200.e22 [PMID: 33756110]
  30. Curr Opin Chem Biol. 2015 Dec;29:94-9 [PMID: 26517567]
  31. Nature. 2020 May;581(7807):221-224 [PMID: 32225175]
  32. N Engl J Med. 2020 Apr 30;382(18):1677-1679 [PMID: 32109012]
  33. Vaccine. 2017 Jun 27;35(30):3726-3732 [PMID: 28578824]
  34. J Virol. 2020 Mar 17;94(7): [PMID: 31996437]
  35. Hum Vaccin Immunother. 2014;10(3):648-58 [PMID: 24355931]
  36. Chem Biol. 2008 Mar;15(3):201-2 [PMID: 18355715]
  37. Nature. 2020 Aug;584(7819):115-119 [PMID: 32454513]
  38. Nat Med. 2021 May;27(5):917-924 [PMID: 33772244]
  39. Nature. 2021 Jun;594(7864):553-559 [PMID: 33971664]
  40. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  41. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  42. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  43. Cell Host Microbe. 2021 Jan 13;29(1):44-57.e9 [PMID: 33259788]
  44. Sci Immunol. 2021 May 25;6(59): [PMID: 34035118]
  45. Nature. 2020 Oct;586(7830):583-588 [PMID: 32731257]
  46. mBio. 2020 Mar 10;11(2): [PMID: 32156809]
  47. Cell. 2021 Aug 5;184(16):4220-4236.e13 [PMID: 34242578]
  48. Proteins. 2018 Nov;86(11):1147-1156 [PMID: 30168197]
  49. J Mol Biol. 2006 Feb 3;355(5):1037-47 [PMID: 16359707]
  50. ACS Nano. 2021 Feb 23;15(2):2738-2752 [PMID: 33464829]
  51. NPJ Vaccines. 2020 May 11;5(1):38 [PMID: 32411401]
  52. Virology. 2009 Oct 10;393(1):144-50 [PMID: 19683779]
  53. Cell Rep Med. 2021 Apr 20;2(4):100255 [PMID: 33842902]
  54. Nat Commun. 2021 Jan 22;12(1):542 [PMID: 33483491]
  55. Nature. 2016 Dec 1;540(7631):150 [PMID: 27760110]
  56. Hum Vaccin Immunother. 2020 Jun 2;16(6):1239-1242 [PMID: 32298218]
  57. Science. 2020 Aug 14;369(6505):806-811 [PMID: 32434945]
  58. Science. 2020 Aug 14;369(6505):812-817 [PMID: 32434946]
  59. Vaccine. 2011 Oct 13;29(44):7733-9 [PMID: 21835220]
  60. Nature. 2004 Apr 1;428(6982):561-4 [PMID: 15024391]
  61. Hum Vaccin Immunother. 2017 Jun 3;13(6):1-4 [PMID: 28362244]
  62. Science. 2021 Jun 18;372(6548):1336-1341 [PMID: 34006597]
  63. JAMA. 2021 Mar 2;325(9):821-822 [PMID: 33507218]
  64. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  65. Science. 2020 Aug 7;369(6504):643-650 [PMID: 32540902]
  66. Nature. 2020 Nov;587(7833):194-196 [PMID: 33168970]
  67. J Pharm Sci. 2017 Aug;106(8):1961-1970 [PMID: 28456726]

Grants

  1. P30 CA014051/NCI NIH HHS
  2. T32 AI007387/NIAID NIH HHS

MeSH Term

Animals
Antibodies, Viral
Antigens, Viral
Binding Sites
COVID-19
COVID-19 Vaccines
Humans
Immunogenicity, Vaccine
Mice
Mice, Inbred BALB C
Models, Molecular
Protein Binding
Protein Conformation
Protein Engineering
SARS-CoV-2
Saccharomycetales
Spike Glycoprotein, Coronavirus
Vaccines, Subunit

Chemicals

Antibodies, Viral
Antigens, Viral
COVID-19 Vaccines
Spike Glycoprotein, Coronavirus
Vaccines, Subunit
spike protein, SARS-CoV-2