Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α-glycosidase inhibitors.

Anita Nasli Esfahani, Aida Iraji, Amir Alamir, Shahram Moradi, Mohammad Sadegh Asgari, Samanesadat Hosseini, Somayeh Mojtabavi, Ensieh Nasli-Esfahani, Mohammad Ali Faramarzi, Fatemeh Bandarian, Bagher Larijani, Haleh Hamedifar, Mir Hamed Hajimiri, Mohammad Mahdavi
Author Information
  1. Anita Nasli Esfahani: Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran.
  2. Aida Iraji: Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
  3. Amir Alamir: Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran.
  4. Shahram Moradi: Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran.
  5. Mohammad Sadegh Asgari: Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
  6. Samanesadat Hosseini: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  7. Somayeh Mojtabavi: Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
  8. Ensieh Nasli-Esfahani: Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
  9. Mohammad Ali Faramarzi: Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
  10. Fatemeh Bandarian: Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
  11. Bagher Larijani: Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
  12. Haleh Hamedifar: CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.
  13. Mir Hamed Hajimiri: Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, 1439955991, Tehran, Iran. h.hajimiri@nanoalvand.com.
  14. Mohammad Mahdavi: Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. mahdavi.chem@gmail.com. ORCID

Abstract

A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC values in the range of 6.31 to 49.89 μM compared to standard drug acarbose (IC = 750.0 ± 10.0 μM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.

Keywords

References

Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA (2020) Potential effect of hydroxychloroquine in diabetes mellitus: a systematic review on preclinical and clinical trial studies. J Diabetes Res 2020:5214751. https://doi.org/10.1155/2020/5214751 [DOI: 10.1155/2020/5214751]
Carvalho DS, de Almeida AA, Borges AF, Vannucci Campos D (2018) Treatments for diabetes mellitus type II: new perspectives regarding the possible role of calcium and cAMP interaction. Eur J Pharmacol 830:9–16. https://doi.org/10.1016/j.ejphar.2018.04.002 [DOI: 10.1016/j.ejphar.2018.04.002]
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3(1):1–17 [DOI: 10.1038/nrdp.2017.16]
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K (2019) Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 862:172625. https://doi.org/10.1016/j.ejphar.2019.172625 [DOI: 10.1016/j.ejphar.2019.172625]
Anthony S, Odgers T, Kelly W (2004) Health promotion and health education about diabetes mellitus. R Soc Health J 124(2):70–73 [DOI: 10.1177/146642400412400210]
Ogawa S, Nako K, Okamura M, Sakamoto T, Ito S (2015) Stabilization of postprandial blood glucose fluctuations by addition of glucagon like polypeptide-analog administration to intensive insulin therapy. J Diabetes Investig 6(4):436–442 [DOI: 10.1111/jdi.12314]
Xiao J, Hogger P (2015) Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 22(1):23–38 [DOI: 10.2174/0929867321666140706130807]
Tundis R, Loizzo M, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem 10(4):315–331 [DOI: 10.2174/138955710791331007]
Pedrood K, Sherafati M, Mohammadi-Khanaposhtani M, Asgari MS, Hosseini S, Rastegar H, Larijani B, Mahdavi M, Taslimi P, Erden Y (2021) Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. Int J Biol Macromol 170:1–12 [DOI: 10.1016/j.ijbiomac.2020.12.121]
Gulçin İ, Taslimi P, Aygün A, Sadeghian N, Bastem E, Kufrevioglu OI, Turkan F, Şen F (2018) Antidiabetic and antiparasitic potentials: inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int J Biol Macromol 119:741–746. https://doi.org/10.1016/j.ijbiomac.2018.08.001 [DOI: 10.1016/j.ijbiomac.2018.08.001]
Hakamata W, Kurihara M, Okuda H, Nishio T, Oku T (2009) Design and screening strategies for α-glucosidase inhibitors based on enzymological information. Curr Top Med Chem 9(1):3–12 [DOI: 10.2174/156802609787354306]
Menteşe E, Baltaş N, Bekircan O (2019) Synthesis and kinetics studies of N′-(2-(3,5-disubstituted-4H-1,2,4-triazol-4-yl)acetyl)-6/7/8-substituted-2-oxo-2H-chromen-3-carbohydrazide derivatives as potent antidiabetic agents. Arch Pharm 352(12):1900227. https://doi.org/10.1002/ardp.201900227 [DOI: 10.1002/ardp.201900227]
Yin Z, Zhang W, Feng F, Zhang Y, Kang W (2014) α-Glucosidase inhibitors isolated from medicinal plants. Food Sci Hum Well 3(3–4):136–174 [DOI: 10.1016/j.fshw.2014.11.003]
Chaudhry F, Shahid W, Al-Rashida M, Ashraf M, Munawar MA, Khan MA (2021) Synthesis of imidazole-pyrazole conjugates bearing aryl spacer and exploring their enzyme inhibition potentials. Bioorg Chem 108:104686 [DOI: 10.1016/j.bioorg.2021.104686]
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M (2021) Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: kinetics and molecular dynamics simulation study. Int J Biol Macromol 166:1082–1095 [DOI: 10.1016/j.ijbiomac.2020.10.263]
Sherafati M, Mirzazadeh R, Barzegari E, Mohammadi-Khanaposhtani M, Azizian H, Sadegh Asgari M, Hosseini S, Zabihi E, Mojtabavi S, Ali Faramarzi M, Mahdavi M, Larijani B, Rastegar H, Hamedifar H, Hamed Hajimiri M (2021) Quinazolinone-dihydropyrano[3,2-b]pyran hybrids as new α-glucosidase inhibitors: design, synthesis, enzymatic inhibition, docking study and prediction of pharmacokinetic. Bioorg Chem 109:104703. https://doi.org/10.1016/j.bioorg.2021.104703 [DOI: 10.1016/j.bioorg.2021.104703]
Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M (2021) Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem 111:104869. https://doi.org/10.1016/j.bioorg.2021.104869 [DOI: 10.1016/j.bioorg.2021.104869]
Zarenezhad E, Farjam M, Iraji A (2021) Synthesis and biological activity of pyrimidines-containing hybrids: focusing on pharmacological application. J Mol Struct 1230:129833. https://doi.org/10.1016/j.molstruc.2020.129833 [DOI: 10.1016/j.molstruc.2020.129833]
Santos CMM, Freitas M, Fernandes E (2018) A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 157:1460–1479. https://doi.org/10.1016/j.ejmech.2018.07.073 [DOI: 10.1016/j.ejmech.2018.07.073]
Sari S, Barut B, Özel A, Saraç S (2020) Discovery of potent α-glucosidase inhibitors through structure-based virtual screening of an in-house azole collection. Chem Biol Drug Des 97:701–710 [DOI: 10.1111/cbdd.13805]
Hbb AG (1994) Pharmacology of α-glucosidase inhibition. Eur J Clin Invest 24(S3):3–10
Scott LJ, Spencer CM (2000) Miglitol. Drugs 59(3):521–549 [DOI: 10.2165/00003495-200059030-00012]
Kumar S, Sharma B, Mehra V, Kumar V (2021) Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H–1,2,3-triazoles. Eur J Med Chem 212:113069. https://doi.org/10.1016/j.ejmech.2020.113069 [DOI: 10.1016/j.ejmech.2020.113069]
Shalini K, Sharma PK, Kumar N (2010) Imidazole and its biological activities: a review. Der Chemica Sinica 1(3):36–47
Razzaghi-Asl N, Sepehri S, Ebadi A, Karami P, Nejatkhah N, Johari-Ahar M (2020) Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Diversity 24(2):525–569. https://doi.org/10.1007/s11030-019-09953-4 [DOI: 10.1007/s11030-019-09953-4]
Deswal L, Verma V, Kumar D, Kaushik Chander P, Kumar A, Deswal Y, Punia S (2020) Synthesis and antidiabetic evaluation of benzimidazole-tethered 1,2,3-triazoles. Arch Pharm 353(9):2000090. https://doi.org/10.1002/ardp.202000090 [DOI: 10.1002/ardp.202000090]
Zawawi NKNA, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F (2017) Synthesis, molecular docking studies of hybrid benzimidazole as α-glucosidase inhibitor. Bioorg Chem 70:184–191. https://doi.org/10.1016/j.bioorg.2016.12.009 [DOI: 10.1016/j.bioorg.2016.12.009]
Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, Nawaz M, Sajid M, Nawaz F, Ibrahim M, Khan KM (2020) Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg Chem 95:103555. https://doi.org/10.1016/j.bioorg.2019.103555 [DOI: 10.1016/j.bioorg.2019.103555]
Rahim F, Zaman K, Taha M, Ullah H, Ghufran M, Wadood A, Rehman W, Uddin N, Shah SAA, Sajid M, Nawaz F, Khan KM (2020) Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg Chem 94:103394. https://doi.org/10.1016/j.bioorg.2019.103394 [DOI: 10.1016/j.bioorg.2019.103394]
Ye G-J, Lan T, Huang Z-X, Cheng X-N, Cai C-Y, Ding S-M, Xie M-L, Wang B (2019) Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177:362–373. https://doi.org/10.1016/j.ejmech.2019.05.045 [DOI: 10.1016/j.ejmech.2019.05.045]
Asemanipoor N, Mohammadi-Khanaposhtani M, Moradi S, Vahidi M, Asadi M, Faramarzi MA, Mahdavi M, Biglar M, Larijani B, Hamedifar H, Hajimiri MH (2020) Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg Chem 95:103482. https://doi.org/10.1016/j.bioorg.2019.103482 [DOI: 10.1016/j.bioorg.2019.103482]
Ali M, Khan KM, Salar U, Ashraf M, Taha M, Wadood A, Hamid S, Riaz M, Ali B, Shamim S, Ali F, Perveen S (2018) Synthesis, in vitro $$\alpha $$-glucosidase inhibitory activity, and in silico study of (E)-thiosemicarbazones and (E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole derivatives. Mol Divers 22(4):841–861. https://doi.org/10.1007/s11030-018-9835-2 [DOI: 10.1007/s11030-018-9835-2]
Ali F, Khan KM, Salar U, Taha M, Ismail NH, Wadood A, Riaz M, Perveen S (2017) Hydrazinyl arylthiazole based pyridine scaffolds: synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies. Eur J Med Chem 138:255–272. https://doi.org/10.1016/j.ejmech.2017.06.041 [DOI: 10.1016/j.ejmech.2017.06.041]
Mehrazar M, Hassankalhori M, Toolabi M, Goli F, Moghimi S, Nadri H, Bukhari SNA, Firoozpour L, Foroumadi A (2020) Design and synthesis of benzodiazepine-1, 2, 3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Diversity 24(4):997–1013 [DOI: 10.1007/s11030-019-10008-x]
Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS (2021) Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Diversity 25(1):403–420. https://doi.org/10.1007/s11030-020-10131-0 [DOI: 10.1007/s11030-020-10131-0]
Yazdani M, Edraki N, Badri R, Khoshneviszadeh M, Iraji A, Firuzi O (2020) 5, 6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol Diversity 24(3):641–654 [DOI: 10.1007/s11030-019-09970-3]
Asgari MS, Mohammadi-Khanaposhtani M, Sharafi Z, Faramarzi MA, Rastegar H, Nasli Esfahani E, Bandarian F, Ranjbar Rashidi P, Rahimi R, Biglar M, Mahdavi M, Larijani B (2021) Design and synthesis of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies. Mol Divers 25(2):877–888. https://doi.org/10.1007/s11030-020-10072-8 [DOI: 10.1007/s11030-020-10072-8]
Nasli-Esfahani E, Mohammadi-Khanaposhtani M, Rezaei S, Sarrafi Y, Sharafi Z, Samadi N, Faramarzi MA, Bandarian F, Hamedifar H, Larijani B, Hajimiri M, Mahdavi M (2019) A new series of Schiff base derivatives bearing 1,2,3-triazole: design, synthesis, molecular docking, and α-glucosidase inhibition. Arch Pharm 352(8):1900034. https://doi.org/10.1002/ardp.201900034 [DOI: 10.1002/ardp.201900034]
Taslimi P, Turhan K, Türkan F, Karaman HS, Turgut Z, Gulcin I (2020) Cholinesterases, α-glycosidase, and carbonic anhydrase inhibition properties of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives: Synthetic analogues for the treatment of Alzheimer’s disease and diabetes mellitus. Bioorgan Chem 97:103647 [DOI: 10.1016/j.bioorg.2020.103647]
Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Gülçin İ, Durgun M (2020) Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1, 3, 5-triazine structural motifs. Bioorgan Chem 100:103897 [DOI: 10.1016/j.bioorg.2020.103897]
Hashmi S, Khan S, Shafiq Z, Taslimi P, Ishaq M, Sadeghian N, Karaman HS, Akhtar N, Islam M, Asari A (2021) Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes. Bioorgan Chem 107:104554 [DOI: 10.1016/j.bioorg.2020.104554]
Sherafati M, Mohammadi-Khanaposhtani M, Moradi S, Asgari MS, Najafabadipour N, Faramarzi MA, Mahdavi M, Biglar M, Larijani B, Hamedifar H, Hajimiri MH (2020) Design, synthesis and biological evaluation of novel phthalimide-Schiff base-coumarin hybrids as potent α-glucosidase inhibitors. Chem Pap 74(12):4379–4388. https://doi.org/10.1007/s11696-020-01246-7 [DOI: 10.1007/s11696-020-01246-7]
Iftikhar M, Shahnawaz SM, Riaz N, Aziz-ur-Rehman AI, Rahman J, Ashraf M, Sharif MS, Khan SU, Htar TT (2019) A novel five-step synthetic route to 1,3,4-oxadiazole derivatives with potent α-glucosidase inhibitory potential and their in silico studies. Arch Pharm 352(12):1900095. https://doi.org/10.1002/ardp.201900095 [DOI: 10.1002/ardp.201900095]

MeSH Term

Acetamides
Glycoside Hydrolase Inhibitors
Kinetics
Molecular Docking Simulation
Molecular Structure
Structure-Activity Relationship
Thiazoles
Triazoles
alpha-Glucosidases

Chemicals

Acetamides
Glycoside Hydrolase Inhibitors
Thiazoles
Triazoles
alpha-Glucosidases

Word Cloud

Similar Articles

Cited By