Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).
Tian, Z. L., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).
[DOI:
10.1016/j.icarus.2016.08.030]
Ćuk, M. & Stewart, S. T. Making the moon from a fast-spinning earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2018).
Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science. 338, 1052–1055 (2018).
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).
[DOI:
10.1006/icar.1999.6204]
Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).
[DOI:
10.1029/92JE02726]
Solomon, S. C. & Longhi, J. Magma oceanography: 1. Thermal evolution. in Proc. Lunar Sci. Conf. 8th 583–599 (1877).
Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).
[DOI:
10.2138/rmg.2006.60.4]
Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).
[DOI:
10.1038/ngeo417]
Kamata, S. et al. The relative timing of lunar magma ocean solidification and the late heavy bombardment inferred from highly degraded impact basin structures. Icarus 250, 492–503 (2015).
[DOI:
10.1016/j.icarus.2014.12.025]
Wieczorek, M. A. & Phillips, R. A. The ‘Procellarum KREEP Terrane’: implications for mare volcanism and lunar evolution. J. Geophys. Res. 195, 20,417–20,430 (2000).
[DOI:
10.1029/1999JE001092]
Laneuville, M., Taylor, J. & Wieczorek, M. A. Distribution of radioactive heat sources and thermal history of the moon. J. Geophys. Res. Planets 123, 3144–3166 (2018).
[DOI:
10.1029/2018JE005742]
Borg, L. E., Shearer, C. K., Asmerom, Y. & Papike, J. J. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004).
[PMID:
15538366]
Crow, C. A., Moser, D. E. & McKeegan, K. D. Shock metamorphic history of >4 Ga Apollo 14 and 15 zircons. Meteorit. Planet. Sci. 54, 181–201 (2019).
[DOI:
10.1111/maps.13184]
Fassett, C. I. & Minton, D. A. Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat. Geosci. 6, 520–524 (2013).
[DOI:
10.1038/ngeo1841]
Zhu, M. H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).
[PMID:
31292556]
Richardson, J. E. Cratering saturation and equilibrium: a new model looks at an old problem. Icarus 204, 697–715 (2009).
[DOI:
10.1016/j.icarus.2009.07.029]
Richardson, J. E. & Abramov, O. Modeling the formation of the lunar upper megaregolith layer. Planet. Sci. J. 1, 2 (2020).
[DOI:
10.3847/PSJ/ab7235]
Zuber, M. T. et al. Gravity field of the moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission. Sci. (80-.) 339, 668–671 (2013).
[DOI:
10.1126/science.1231507]
Wieczorek, M. A. et al. The crust of the moon as seen by GRAIL. Science 339, 671–675 (2013).
[PMID:
23223394]
Neumann, G. A. et al. Planetary science: lunar impact basins revealed by gravity recovery and interior laboratory measurements. Sci. Adv. 1, e1500852 (2015).
Wilhelms, D. E. The Geologic History of the Moon, https://doi.org/10.3133/pp1348 (1987).
Mohit, P. S. & Phillips, R. J. Viscoelastic evolution of lunar multiring basins. J. Geophys. Res. E Planets 111, 1–17 (2006).
[DOI:
10.1029/2005JE002654]
Miljković, K. et al. Subsurface morphology and scaling of lunar impact basins. J. Geophys. Res. Planets 121, 1695–1712 (2016).
[DOI:
10.1002/2016JE005038]
Potter, R. W. K., Kring, D. A., Collins, G. S., Kiefer, W. S. & McGovern, P. J. Estimating transient crater size using the crustal annular bulge: Insights from numerical modeling of lunar basin-scale impacts. Geophys. Res. Lett. 39, 1–5 (2012).
[DOI:
10.1029/2012GL052981]
Conrad, J. W., Nimmo, F., Fassett, C. I. & Kamata, S. Lunar impact history constrained by GRAIL-derived basin relaxation measurements. Icarus 314, 50–63 (2018).
[DOI:
10.1016/j.icarus.2018.05.029]
Solomon, S. C., Comer, R. P. & Head, J. W. The evolution of impact basins: viscous relaxation of topographic relief (Orientale Basin, Moon). J. Geophys. Res. 87, 3975–3992 (1982).
[DOI:
10.1029/JB087iB05p03975]
Kamata, S. et al. Viscoelastic deformation of lunar impact basins: Implications for heterogeneity in the deep crustal paleo-thermal state and radioactive element concentration. J. Geophys. Res. E Planets 118, 398–415 (2013).
[DOI:
10.1002/jgre.20056]
Johnson, B. C. et al. Formation of the Orientale lunar multiring basin. Science 354, 441–444 (2016).
Melosh, H. J. & Mckinnon, W. B. The mechanics of ringed basin formation. Geophys. Res. Lett. 5, 8–11 (1978).
[DOI:
10.1029/GL005i011p00985]
McKinnon, W. B. Multi-ring basins: formation and evolution. Proc. Lunar Sci. Conf. 12A, 259–273 (1981).
Johnson, B. C. et al. Controls on the formation of lunar multiring basins. J. Geophys. Res. Planets 123, 3035–3050 (2018).
[DOI:
10.1029/2018JE005765]
Mc Kinnon, W. B. & Melosh, H. J. Evolution of planetary lithospheres: evidence from multiringed structures on ganymede and callisto. Icarus 44, 454–471 (1980).
Miljković, K. et al. Excavation of the lunar mantle by basin-forming events on the Moon. Earth Planet. Sci. Lett. 409, 243–251 (2015).
[DOI:
10.1016/j.epsl.2014.10.041]
Trowbridge, A. J., Johnson, B. C., Freed, A. M. & Melosh, H. J. Why the lunar South Pole-Aitken Basin is not a mascon. Icarus https://doi.org/10.1016/j.icarus.2020.113995 (2020).
Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).
[DOI:
10.1111/j.1945-5100.2004.tb00337.x]
Ivanov, B. A., Deniem, D. & Neukum, G. Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering. Int. J. Impact Eng. 20, 411–430 (1997).
[DOI:
10.1016/S0734-743X(97)87511-2]
Wünnemann, K., Collins, G. S. & Melosh, H. J. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180, 514–527 (2006).
[DOI:
10.1016/j.icarus.2005.10.013]
Pierazzo, E. et al. Validation of numerical codes for impact and explosion cratering: impacts on strengthless and metal targets. Meteorit. Planet. Sci. 43, 1917–1938 (2008).
[DOI:
10.1111/j.1945-5100.2008.tb00653.x]
Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).
[DOI:
10.1006/icar.1997.5713]
Ivanov, B. A., Melosh, H. J. & Pierazzo, E. Basin-forming impacts: reconnaissance modeling. Spec. Pap. Geol. Soc. Am. 465, 29–49 (2010).
Zhang, N., Dygert, N., Liang, Y. & Parmentier, E. M. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. Geophys. Res. Lett. 44, 6543–6552 (2017).
[DOI:
10.1002/2017GL073702]
Reese, C. C. & Solomatov, V. S. Fluid dynamics of local martian magma oceans. Icarus 184, 102–120 (2006).
[DOI:
10.1016/j.icarus.2006.04.008]
Solomatov, V. S. in Treatise on Geophysics (ed. Schubert, G.) 91–120 (Elsevier, 2007).
Laneuville, M., Wieczorek, M. A., Breuer, D. & Tosi, N. Asymmetric thermal evolution of the Moon. J. Geophys. Res. E Planets 118, 1435–1452 (2013).
[DOI:
10.1002/jgre.20103]
Miljković, K. et al. Asymmetric distribution of lunar impact basins caused by variations in target properties. Science 342, 724–726 (2013).
Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole-Aitken basin impact. Icarus 220, 730–743 (2012).
[DOI:
10.1016/j.icarus.2012.05.032]
Potter, R. W. K., Kring, D. A. & Collins, G. S. Large Meteorite Impacts and Planetary Evolution V GSA Special Papers. Scaling of basin-sized impacts and the influence of target temperature. 2518, 99–113 (2015).
Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011).
[DOI:
10.1016/j.icarus.2011.03.010]
Marchi, S., Mottola, S., Cremonese, G., Massironi, M. & Martellato, E. A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009).
[DOI:
10.1088/0004-6256/137/6/4936]
Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).
[PMID:
22535245]
Pierazzo, E. & Melosh, H. J. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35, 117–130 (2000).
[DOI:
10.1111/j.1945-5100.2000.tb01979.x]
Elbeshausen, D., Wünnemann, K. & Collins, G. S. Scaling of oblique impacts in frictional targets: Implications for crater size and formation mechanisms. Icarus 204, 716–731 (2009).
[DOI:
10.1016/j.icarus.2009.07.018]
Collins, G. S. et al. A steeply-inclined trajectory for the chicxulub impact. Nat. Commun. 11, 1480 (2020).
[PMID:
32457325]