The NF-κB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication.

Benjamin E Nilsson-Payant, Skyler Uhl, Adrien Grimont, Ashley S Doane, Phillip Cohen, Roosheel S Patel, Christina A Higgins, Joshua A Acklin, Yaron Bram, Vasuretha Chandar, Daniel Blanco-Melo, Maryline Panis, Jean K Lim, Olivier Elemento, Robert E Schwartz, Brad R Rosenberg, Rohit Chandwani, Benjamin R tenOever
Author Information
  1. Benjamin E Nilsson-Payant: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  2. Skyler Uhl: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  3. Adrien Grimont: Department of Surgery, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  4. Ashley S Doane: Department of Physiology and Biophysics, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  5. Phillip Cohen: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  6. Roosheel S Patel: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  7. Christina A Higgins: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  8. Joshua A Acklin: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  9. Yaron Bram: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  10. Vasuretha Chandar: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  11. Daniel Blanco-Melo: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  12. Maryline Panis: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA.
  13. Jean K Lim: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA.
  14. Olivier Elemento: Department of Physiology and Biophysics, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  15. Robert E Schwartz: Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  16. Brad R Rosenberg: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID
  17. Rohit Chandwani: Department of Surgery, Weill Cornell Medicinegrid.471410.7, New York, New York, USA. ORCID
  18. Benjamin R tenOever: Department of Microbiology, Icahn School of Medicine at Mount Sinaigrid.59734.3c, New York, New York, USA. ORCID

Abstract

SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication . These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.

Keywords

References

  1. PLoS Pathog. 2008 Feb 8;4(2):e22 [PMID: 18266467]
  2. Trends Microbiol. 2017 Jul;25(7):573-584 [PMID: 28139375]
  3. Cell Microbiol. 2012 Dec;14(12):1849-66 [PMID: 22891964]
  4. Annu Rev Immunol. 2009;27:693-733 [PMID: 19302050]
  5. J Virol. 2014 Jul;88(14):7941-51 [PMID: 24807716]
  6. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  7. Nat Rev Immunol. 2002 Feb;2(2):106-15 [PMID: 11910892]
  8. Nat Methods. 2015 Apr;12(4):326-8 [PMID: 25730490]
  9. PLoS Pathog. 2013 Feb;9(2):e1003183 [PMID: 23468625]
  10. Sci Adv. 2021 Feb 5;7(6): [PMID: 33547084]
  11. J Virol. 2020 Nov 9;94(23): [PMID: 32938761]
  12. Trends Immunol. 2004 Jun;25(6):280-8 [PMID: 15145317]
  13. mBio. 2021 Feb 16;12(1): [PMID: 33593976]
  14. Cold Spring Harb Perspect Biol. 2015 Jan 29;7(5): [PMID: 25635046]
  15. J Virol. 2014 Sep 1;88(17):10252-8 [PMID: 24920812]
  16. Cell Microbiol. 2007 Jul;9(7):1683-94 [PMID: 17324159]
  17. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  18. Cell. 2000 Nov 10;103(4):667-78 [PMID: 11106736]
  19. PLoS Pathog. 2008 Aug 15;4(8):e1000128 [PMID: 18704168]
  20. J Virol. 2009 Feb;83(3):1271-9 [PMID: 19019947]
  21. Antiviral Res. 2011 Oct;92(1):45-56 [PMID: 21641936]
  22. J Virol. 2014 Dec;88(24):14289-300 [PMID: 25275128]
  23. J Virol. 2020 Sep 15;94(19): [PMID: 32699094]
  24. Nat Rev Immunol. 2005 Oct;5(10):749-59 [PMID: 16175180]
  25. J Biol Chem. 2012 Dec 28;287(53):44714-35 [PMID: 23132857]
  26. Cell Microbiol. 2013 Jul;15(7):1198-211 [PMID: 23320394]
  27. Cell. 2007 Jun 15;129(6):1111-23 [PMID: 17574024]
  28. Nat Immunol. 2004 Oct;5(10):987-95 [PMID: 15454922]
  29. J Virol. 2017 Mar 29;91(8): [PMID: 28179530]
  30. Cell Mol Immunol. 2021 Mar;18(3):613-620 [PMID: 33110251]
  31. Immunity. 2021 Mar 9;54(3):557-570.e5 [PMID: 33577760]
  32. Nat Methods. 2018 Apr;15(4):255-261 [PMID: 29481549]
  33. Cell. 2021 Jan 7;184(1):92-105.e16 [PMID: 33147445]
  34. Cell Host Microbe. 2017 Aug 9;22(2):176-184 [PMID: 28799903]
  35. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  36. J Clin Invest. 2001 Jan;107(2):143-51 [PMID: 11160127]
  37. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  38. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  39. J Biol Chem. 2004 Jul 23;279(30):30931-7 [PMID: 15143063]
  40. Cell Host Microbe. 2016 Feb 10;19(2):142-9 [PMID: 26867173]
  41. Cell Rep. 2020 Oct 6;33(1):108234 [PMID: 32979938]
  42. Immunity. 2006 Sep;25(3):349-60 [PMID: 16979567]
  43. Immunity. 2019 Apr 16;50(4):907-923 [PMID: 30995506]
  44. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  45. Viruses. 2018 Aug 04;10(8): [PMID: 30081579]
  46. J Biol Chem. 2011 Jun 10;286(23):20727-35 [PMID: 21474453]
  47. J Virol. 2017 Jun 9;91(13): [PMID: 28424289]
  48. J Biol Chem. 2018 Jun 29;293(26):10344-10352 [PMID: 29748387]
  49. Science. 2003 May 16;300(5622):1148-51 [PMID: 12702806]
  50. Cell. 2002 Apr;109 Suppl:S81-96 [PMID: 11983155]
  51. J Virol. 2011 Oct;85(20):10899-904 [PMID: 21835791]
  52. PLoS Biol. 2021 Mar 17;19(3):e3001143 [PMID: 33730024]
  53. Nat Rev Immunol. 2018 May;18(5):309-324 [PMID: 29379212]
  54. J Virol. 2012 Sep;86(17):9311-22 [PMID: 22718831]
  55. J Virol. 2017 Feb 14;91(5): [PMID: 28031360]
  56. J Gen Virol. 2004 Aug;85(Pt 8):2347-2356 [PMID: 15269376]
  57. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  58. PLoS Pathog. 2017 Jun 1;13(6):e1006423 [PMID: 28570668]
  59. Cold Spring Harb Perspect Biol. 2009 Oct;1(4):a000034 [PMID: 20066092]
  60. Nat Commun. 2020 Jul 30;11(1):3810 [PMID: 32733001]
  61. Cell Host Microbe. 2021 Jul 14;29(7):1052-1062 [PMID: 34022154]
  62. PLoS Pathog. 2021 Jan 28;17(1):e1009292 [PMID: 33507952]
  63. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28344-28354 [PMID: 33097660]
  64. Cell Rep. 2021 Feb 16;34(7):108761 [PMID: 33567255]
  65. Proc Natl Acad Sci U S A. 2021 Apr 20;118(16): [PMID: 33811184]
  66. J Virol. 2010 Aug;84(15):7832-46 [PMID: 20504922]
  67. Lancet Respir Med. 2021 Feb;9(2):196-206 [PMID: 33189161]
  68. Genome Biol. 2019 Oct 17;20(1):210 [PMID: 31623682]
  69. Annu Rev Immunol. 2014;32:513-45 [PMID: 24555472]
  70. Nucleic Acids Res. 2012 Sep 1;40(17):e133 [PMID: 22638577]
  71. Nucleic Acids Res. 2012 Apr;40(8):3548-62 [PMID: 22187158]

Grants

  1. T32 AI007647/NIAID NIH HHS
  2. /Bill and Melinda Gates Foundation (BMGF)
  3. S10 OD026880/NIH HHS
  4. AI151029-01A1/Foundation for the National Institutes of Health (FNIH)
  5. R01 DK121072/NIDDK NIH HHS
  6. R01 AI151029/NIAID NIH HHS

MeSH Term

A549 Cells
Animals
COVID-19
Chlorocebus aethiops
Cytokines
Epigenomics
Gene Expression Regulation
HEK293 Cells
HeLa Cells
Host Microbial Interactions
Humans
Interferon Type I
SARS-CoV-2
Signal Transduction
Single-Cell Analysis
Transcription Factor RelA
Transcription Factors
Transcriptome
Vero Cells
Virus Replication

Chemicals

Cytokines
Interferon Type I
RELA protein, human
Transcription Factor RelA
Transcription Factors