The use of belowground microorganisms in agriculture, with the aim to stimulate plant growth and improve crop yields, has recently gained interest. However, few studies have examined the effects of microorganism inoculation on higher trophic levels in natural conditions. We examined how the diversity of phytophagous insects and their natural enemies responded to the field-inoculation of soybean with a model arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, combined with a nitrogen-fixing bacterium, Bradyrhizobium japonicum, and a plant growth-promoting bacterium, Bacillus pumilus. We also investigate if the absence or presence of potassium fertilizer can affect this interaction. We found an increase in the abundance of piercing-sucking insects with the triple inoculant irrespective of potassium treatment, whereas there were no differences among treatments for other insect groups. A decrease in the abundance of the soybean aphid, Aphis glycines, with the double inoculant Rhizophagus + Bradyrhizobium was observed in potassium enriched plots and in the abundance of Empoasca spp. with potassium treatment independent of inoculation type. Although it was not possible to discriminate the mycorrhization realized by inoculum from that of the indigenous AMF in the field, we confirmed global negative effects of overall mycorrhizal colonization on the abundance of phytophagous piercing-sucking insects, phytophagous chewing insects, and the alpha diversity of phytophagous insects. In perspective, the use of AMF/Rhizobacteria inoculants in the field should focus on the identity and performance of strains to better understand their impact on insects.
Plant Physiol. 2003 Mar;131(3):872-7
[PMID:
12644639]
FEMS Microbiol Ecol. 2000 Apr 1;32(2):91-96
[PMID:
10817861]
Environ Entomol. 2007 Feb;36(1):26-33
[PMID:
17349112]
World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50
[PMID:
22805914]
Mol Plant Microbe Interact. 2014 Dec;27(12):1403-12
[PMID:
25162317]
Appl Environ Microbiol. 1998 Dec;64(12):5004-7
[PMID:
9835596]
J Biotechnol. 2008 Apr 30;134(3-4):312-9
[PMID:
18358553]
Front Plant Sci. 2015 May 27;6:318
[PMID:
26074927]
Environ Microbiol. 2016 Sep;18(8):2689-704
[PMID:
27376781]
Annu Rev Entomol. 2009;54:323-42
[PMID:
19067635]
Trends Ecol Evol. 1994 Jul;9(7):251-5
[PMID:
21236843]
Int J Mol Sci. 2014 Jan 21;15(1):1466-80
[PMID:
24451132]
New Phytol. 1994 Sep;128(1):79-87
[PMID:
33874534]
Annu Rev Plant Biol. 2008;59:41-66
[PMID:
18031220]
J Exp Bot. 2014 Oct;65(18):5231-41
[PMID:
25200735]
Mycorrhiza. 2006 Jul;16(5):299-363
[PMID:
16845554]
J Econ Entomol. 2005 Feb;98(1):113-20
[PMID:
15765672]
J Chem Ecol. 2016 Dec;42(12):1247-1258
[PMID:
27787678]
Environ Entomol. 2009 Feb;38(1):93-102
[PMID:
19791601]
Microbiol Res. 2014 May-Jun;169(5-6):325-36
[PMID:
24144612]
J Insect Physiol. 2017 Apr;98:258-266
[PMID:
28159616]
Insect Sci. 2017 Dec;24(6):947-960
[PMID:
28374534]
Curr Biol. 2011 Jul 26;21(14):1204-9
[PMID:
21757354]
Mycorrhiza. 2011 Apr;21(3):173-81
[PMID:
20544230]
Ecology. 2009 Aug;90(8):2088-97
[PMID:
19739371]
J Chem Ecol. 2012 Jun;38(6):651-64
[PMID:
22623151]
Front Plant Sci. 2018 Nov 13;9:1631
[PMID:
30483288]
Environ Microbiol. 2006 Jan;8(1):1-10
[PMID:
16343316]