In vivo structure and dynamics of the SARS-CoV-2 RNA genome.

Yan Zhang, Kun Huang, Dejian Xie, Jian You Lau, Wenlong Shen, Ping Li, Dong Wang, Zhong Zou, Shu Shi, Hongguang Ren, Youliang Wang, Youzhi Mao, Meilin Jin, Grzegorz Kudla, Zhihu Zhao
Author Information
  1. Yan Zhang: Beijing institute of Biotechnology, Beijing, China. ORCID
  2. Kun Huang: Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  3. Dejian Xie: Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China.
  4. Jian You Lau: MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK. ORCID
  5. Wenlong Shen: Beijing institute of Biotechnology, Beijing, China.
  6. Ping Li: Beijing institute of Biotechnology, Beijing, China. ORCID
  7. Dong Wang: Department of Microbiology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China.
  8. Zhong Zou: Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
  9. Shu Shi: Beijing institute of Biotechnology, Beijing, China.
  10. Hongguang Ren: Beijing institute of Biotechnology, Beijing, China.
  11. Youliang Wang: Beijing institute of Biotechnology, Beijing, China. ORCID
  12. Youzhi Mao: Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan, China.
  13. Meilin Jin: Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. jinmeilin@mail.hzau.edu.cn.
  14. Grzegorz Kudla: MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, UK. gkudla@gmail.com. ORCID
  15. Zhihu Zhao: Beijing institute of Biotechnology, Beijing, China. zhaozh@bmi.ac.cn. ORCID

Abstract

The dynamics of SARS-CoV-2 RNA structure and their functional relevance are largely unknown. Here we develop a simplified SPLASH assay and comprehensively map the in vivo RNA-RNA interactome of SARS-CoV-2 genome across viral life cycle. We report canonical and alternative structures including 5'-UTR and 3'-UTR, frameshifting element (FSE) pseudoknot and genome cyclization in both cells and virions. We provide direct evidence of interactions between Transcription Regulating Sequences, which facilitate discontinuous transcription. In addition, we reveal alternative short and long distance arches around FSE. More importantly, we find that within virions, while SARS-CoV-2 genome RNA undergoes intensive compaction, genome domains remain stable but with strengthened demarcation of local domains and weakened global cyclization. Taken together, our analysis reveals the structural basis for the regulation of replication, discontinuous transcription and translational frameshifting, the alternative conformations and the maintenance of global genome organization during the whole life cycle of SARS-CoV-2, which we anticipate will help develop better antiviral strategies.

References

  1. Annu Rev Virol. 2015 Nov;2(1):265-88 [PMID: 26958916]
  2. J Virol. 2004 Jan;78(2):980-94 [PMID: 14694129]
  3. Emerg Microbes Infect. 2020 Dec;9(1):221-236 [PMID: 31987001]
  4. Mol Cell. 2016 May 19;62(4):618-26 [PMID: 27184080]
  5. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  6. Nat Methods. 2021 Mar;18(3):249-252 [PMID: 33619392]
  7. J Virol. 2007 Jul;81(14):7716-24 [PMID: 17475638]
  8. Mol Cell. 2021 Feb 4;81(3):584-598.e5 [PMID: 33444546]
  9. Nature. 2020 Jun;582(7812):432-437 [PMID: 32499643]
  10. Bioinformatics. 2014 Jun 15;30(12):i26-33 [PMID: 24931992]
  11. Cell. 2021 Apr 1;184(7):1865-1883.e20 [PMID: 33636127]
  12. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  13. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  14. Methods. 2014 Feb;65(3):263-73 [PMID: 24211736]
  15. Genome Med. 2020 Dec 1;12(1):108 [PMID: 33256807]
  16. Cell. 2013 Apr 25;153(3):654-65 [PMID: 23622248]
  17. Science. 2021 Jun 18;372(6548):1306-1313 [PMID: 34029205]
  18. J Virol. 2005 Feb;79(4):2506-16 [PMID: 15681451]
  19. Cell Host Microbe. 2018 Dec 12;24(6):875-886.e5 [PMID: 30472207]
  20. Biochem Soc Trans. 2021 Feb 26;49(1):341-352 [PMID: 33367597]
  21. Methods Mol Biol. 2008;454:27-34 [PMID: 19057866]
  22. Mol Cell. 2016 May 19;62(4):603-17 [PMID: 27184079]
  23. Virus Evol. 2015 May 26;1(1):vev003 [PMID: 27774277]
  24. Annu Rev Genomics Hum Genet. 2020 Aug 31;21:81-100 [PMID: 32320281]
  25. Bioinformatics. 2004 Nov 22;20(17):3246-8 [PMID: 15180930]
  26. Virus Res. 2015 Aug 3;206:120-33 [PMID: 25736566]
  27. Nat Commun. 2021 Jun 24;12(1):3917 [PMID: 34168138]
  28. Sci Adv. 2020 Jul 1;6(27): [PMID: 32937441]
  29. J Virol. 1999 Jan;73(1):152-60 [PMID: 9847317]
  30. J Virol. 2008 Feb;82(3):1214-28 [PMID: 18032506]
  31. J Biol Chem. 2020 Jul 31;295(31):10741-10748 [PMID: 32571880]
  32. Mol Cell. 2009 Nov 25;36(4):583-92 [PMID: 19941819]
  33. J Virol. 2013 Jan;87(1):177-86 [PMID: 23055566]
  34. Nat Methods. 2018 Oct;15(10):785-788 [PMID: 30202058]
  35. Cell. 2020 Oct 29;183(3):730-738.e13 [PMID: 32979942]
  36. Elife. 2016 Oct 01;5: [PMID: 27692070]
  37. Mol Cell. 2021 May 20;81(10):2135-2147.e5 [PMID: 33713597]
  38. Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10010-5 [PMID: 21610164]
  39. Nucleic Acids Res. 2021 Apr 6;49(6):3092-3108 [PMID: 33693814]
  40. Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452 [PMID: 33166999]
  41. Nat Commun. 2021 Sep 28;12(1):5695 [PMID: 34584097]
  42. RNA. 2020 Aug;26(8):937-959 [PMID: 32398273]
  43. Nature. 2015 Jul 9;523(7559):240-4 [PMID: 26030525]
  44. J Virol. 2007 Feb;81(3):1274-87 [PMID: 17093194]
  45. Mol Cell. 2014 Jun 19;54(6):1042-1054 [PMID: 24857550]
  46. Adv Virus Res. 2016;96:127-163 [PMID: 27712622]
  47. Nat Commun. 2019 Mar 29;10(1):1408 [PMID: 30926818]
  48. Mol Cell. 2020 Dec 17;80(6):1067-1077.e5 [PMID: 33259809]
  49. Nat Biotechnol. 2015 Sep;33(9):980-4 [PMID: 26237516]
  50. Virology. 2021 Feb;554:75-82 [PMID: 33387787]
  51. PLoS Biol. 2005 Jun;3(6):e172 [PMID: 15884978]
  52. Cell. 2016 May 19;165(5):1267-1279 [PMID: 27180905]
  53. Nucleic Acids Res. 2020 Dec 16;48(22):12415-12435 [PMID: 33167030]

Grants

  1. /Wellcome Trust

MeSH Term

Animals
COVID-19
Chlorocebus aethiops
Frameshifting, Ribosomal
Genome, Viral
Humans
RNA, Viral
RNA-Seq
SARS-CoV-2
Transcription, Genetic
Vero Cells
Virus Replication

Chemicals

RNA, Viral

Word Cloud

Similar Articles

Cited By