Patrizia Sommi, Agostina Vitali, Stefania Coniglio, Daniele Callegari, Sofia Barbieri, Alberto Casu, Andrea Falqui, Lorenzo Vigano', Barbara Vigani, Franca Ferrari, Umberto Anselmi-Tamburini
The cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated. This microvillus-mediated adhesion (MMA) has been observed using ceria and magnetite NPs with a dimension of <40 nm functionalized with polyacrylic acid but not using NPs with a neutral or positive functionalization. Such an adhesion was not cell specific, as it was demonstrated in three different cell lines. MMA was also reduced by modifications of the microvillus lipid rafts, obtained by depleting cholesterol and altering synthesis of sphingolipids. We found a direct relationship between MAA, cell cycle, and density of microvilli. The evidence suggests that MMA differs from the commonly described uptake mechanisms and might represent an interesting alternative approach for selective NP delivery.
J Cell Biol. 1994 Jun;125(6):1371-84
[PMID:
8207064]
Biochem Biophys Res Commun. 2019 Jul 5;514(4):1238-1243
[PMID:
31109644]
Eur J Cell Biol. 1999 Jul;78(7):473-84
[PMID:
10472800]
ACS Nano. 2010 Sep 28;4(9):5421-9
[PMID:
20799717]
Curr Pharm Des. 2013;19(35):6353-66
[PMID:
23469998]
Nat Nanotechnol. 2008 Mar;3(3):145-50
[PMID:
18654486]
Adv Mater. 2018 Mar;30(9):
[PMID:
29325211]
Nanomaterials (Basel). 2019 Nov 04;9(11):
[PMID:
31690040]
Mol Pharm. 2014 Dec 1;11(12):4363-73
[PMID:
25327847]
Acc Chem Res. 2013 Mar 19;46(3):622-31
[PMID:
22891796]
Small. 2011 May 23;7(10):1322-37
[PMID:
21520409]
Am J Physiol Cell Physiol. 2001 Aug;281(2):C369-85
[PMID:
11443036]
Nanoscale. 2017 Jan 26;9(4):1527-1538
[PMID:
28067927]
J Cell Sci. 2013 Aug 15;126(Pt 16):3585-92
[PMID:
23690544]
Nat Cell Biol. 2009 May;11(5):510-20
[PMID:
19404330]
J Cell Biol. 1967 Aug;34(2):569-76
[PMID:
6035646]
Nanoscale. 2013 Nov 21;5(22):11153-65
[PMID:
24077327]
Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12425-30
[PMID:
9356465]
PLoS One. 2009;4(4):e5386
[PMID:
19404395]
Biomacromolecules. 2008 Feb;9(2):435-43
[PMID:
18189360]
Nanoscale. 2015 Jun 14;7(22):10050-8
[PMID:
25975182]
FEBS Lett. 2004 May 7;565(1-3):53-8
[PMID:
15135052]
Adv Mater. 2009;21:419-424
[PMID:
19606281]
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9469-74
[PMID:
15972807]
J Cell Sci. 1999 Apr;112 ( Pt 7):1023-33
[PMID:
10198284]
Nat Nanotechnol. 2017 Jul 6;12(7):598-600
[PMID:
28681852]
Nanotoxicology. 2016 Sep;10(7):861-70
[PMID:
26812144]
J Control Release. 2012 Jul 20;161(2):164-74
[PMID:
22516097]
Biomaterials. 2018 Aug;174:41-53
[PMID:
29778981]
Phys Biol. 2011 Aug;8(4):046002
[PMID:
21508440]
Methods Mol Biol. 2013;1025:137-55
[PMID:
23918335]
Nat Nanotechnol. 2011 Nov 06;7(1):62-8
[PMID:
22056728]
Cancer Res. 1976 Nov;36(11 Pt 1):4044-51
[PMID:
61800]
Beilstein J Nanotechnol. 2020 Feb 14;11:338-353
[PMID:
32117671]
Chem Soc Rev. 2012 Apr 7;41(7):2718-39
[PMID:
22389111]
ACS Nano. 2015 Feb 24;9(2):2157-66
[PMID:
25599105]
Nat Nanotechnol. 2021 Mar;16(3):266-276
[PMID:
33712737]
Biol Cell. 2000 Aug;92(5):305-16
[PMID:
11071040]
Nat Nanotechnol. 2011 Jan;6(1):11-2
[PMID:
21179098]
J Cell Sci. 2009 Jun 1;122(Pt 11):1713-21
[PMID:
19461071]
Small. 2009 Aug 17;5(16):1862-8
[PMID:
19384879]
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5819-22
[PMID:
12721367]
Dermatoendocrinol. 2009 Jul;1(4):197-206
[PMID:
20592791]
ACS Nano. 2010 Sep 28;4(9):5321-31
[PMID:
20690607]
Nat Cell Biol. 2000 Sep;2(9):582-92
[PMID:
10980698]
Biomacromolecules. 2009 Sep 14;10(9):2379-400
[PMID:
19637907]
Biomaterials. 2016 Jan;75:295-304
[PMID:
26513421]
Nano Lett. 2006 Apr;6(4):662-8
[PMID:
16608261]