Blood and immune development in human fetal bone marrow and Down syndrome.

Laura Jardine, Simone Webb, Issac Goh, Mariana Quiroga Londo��o, Gary Reynolds, Michael Mather, Bayanne Olabi, Emily Stephenson, Rachel A Botting, Dave Horsfall, Justin Engelbert, Daniel Maunder, Nicole Mende, Caitlin Murnane, Emma Dann, Jim McGrath, Hamish King, Iwo Kucinski, Rachel Queen, Christopher D Carey, Caroline Shrubsole, Elizabeth Poyner, Meghan Acres, Claire Jones, Thomas Ness, Rowen Coulthard, Natalina Elliott, Sorcha O'Byrne, Myriam L R Haltalli, John E Lawrence, Steven Lisgo, Petra Balogh, Kerstin B Meyer, Elena Prigmore, Kirsty Ambridge, Mika Sarkin Jain, Mirjana Efremova, Keir Pickard, Thomas Creasey, Jaume Bacardit, Deborah Henderson, Jonathan Coxhead, Andrew Filby, Rafiqul Hussain, David Dixon, David McDonald, Dorin-Mirel Popescu, Monika S Kowalczyk, Bo Li, Orr Ashenberg, Marcin Tabaka, Danielle Dionne, Timothy L Tickle, Michal Slyper, Orit Rozenblatt-Rosen, Aviv Regev, Sam Behjati, Elisa Laurenti, Nicola K Wilson, Anindita Roy, Berthold G��ttgens, Irene Roberts, Sarah A Teichmann, Muzlifah Haniffa
Author Information
  1. Laura Jardine: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  2. Simone Webb: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  3. Issac Goh: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  4. Mariana Quiroga Londo��o: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  5. Gary Reynolds: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  6. Michael Mather: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  7. Bayanne Olabi: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  8. Emily Stephenson: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  9. Rachel A Botting: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  10. Dave Horsfall: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  11. Justin Engelbert: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  12. Daniel Maunder: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  13. Nicole Mende: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  14. Caitlin Murnane: Department of Paediatrics, University of Oxford, Oxford, UK.
  15. Emma Dann: Wellcome Sanger Institute, Hinxton, UK. ORCID
  16. Jim McGrath: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  17. Hamish King: Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK. ORCID
  18. Iwo Kucinski: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  19. Rachel Queen: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  20. Christopher D Carey: Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
  21. Caroline Shrubsole: Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  22. Elizabeth Poyner: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  23. Meghan Acres: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  24. Claire Jones: NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  25. Thomas Ness: NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  26. Rowen Coulthard: NovoPath, Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  27. Natalina Elliott: Department of Paediatrics, University of Oxford, Oxford, UK.
  28. Sorcha O'Byrne: Department of Paediatrics, University of Oxford, Oxford, UK.
  29. Myriam L R Haltalli: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  30. John E Lawrence: Wellcome Sanger Institute, Hinxton, UK.
  31. Steven Lisgo: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  32. Petra Balogh: Wellcome Sanger Institute, Hinxton, UK.
  33. Kerstin B Meyer: Wellcome Sanger Institute, Hinxton, UK. ORCID
  34. Elena Prigmore: Wellcome Sanger Institute, Hinxton, UK.
  35. Kirsty Ambridge: Wellcome Sanger Institute, Hinxton, UK.
  36. Mika Sarkin Jain: Wellcome Sanger Institute, Hinxton, UK.
  37. Mirjana Efremova: Barts Cancer Institute, Queen Mary University of London, London, UK. ORCID
  38. Keir Pickard: Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
  39. Thomas Creasey: Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK. ORCID
  40. Jaume Bacardit: School of Computing, Newcastle University, Newcastle upon Tyne, UK. ORCID
  41. Deborah Henderson: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  42. Jonathan Coxhead: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. ORCID
  43. Andrew Filby: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  44. Rafiqul Hussain: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  45. David Dixon: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  46. David McDonald: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  47. Dorin-Mirel Popescu: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
  48. Monika S Kowalczyk: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  49. Bo Li: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  50. Orr Ashenberg: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  51. Marcin Tabaka: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  52. Danielle Dionne: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  53. Timothy L Tickle: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA. ORCID
  54. Michal Slyper: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
  55. Orit Rozenblatt-Rosen: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA. ORCID
  56. Aviv Regev: Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA. ORCID
  57. Sam Behjati: Wellcome Sanger Institute, Hinxton, UK. ORCID
  58. Elisa Laurenti: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  59. Nicola K Wilson: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  60. Anindita Roy: Department of Paediatrics, University of Oxford, Oxford, UK. ORCID
  61. Berthold G��ttgens: Department of Haematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK. ORCID
  62. Irene Roberts: Department of Paediatrics, University of Oxford, Oxford, UK.
  63. Sarah A Teichmann: Wellcome Sanger Institute, Hinxton, UK. ORCID
  64. Muzlifah Haniffa: Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. m.a.haniffa@ncl.ac.uk. ORCID

Abstract

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).

References

  1. O���Byrne, S. et al. Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. Blood 134, 1059���1071 (2019). [DOI: 10.1182/blood.2019001289]
  2. Charbord, P., Tavian, M., Humeau, L. & P��ault, B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87, 4109���4119 (1996). [DOI: 10.1182/blood.V87.10.4109.bloodjournal87104109]
  3. Park, J.-E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020). [DOI: 10.1126/science.aay3224]
  4. Popescu, D.-M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365���371 (2019). [DOI: 10.1038/s41586-019-1652-y]
  5. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499���1503 (1999). [DOI: 10.1016/S0140-6736(99)09403-9]
  6. Muntean, A. G., Ge, Y., Taub, J. W. & Crispino, J. D. Transcription factor GATA-1 and Down syndrome leukemogenesis. Leuk. Lymphoma 47, 986���997 (2006). [DOI: 10.1080/10428190500485810]
  7. Roy, A. et al. Perturbation of fetal liver hematopoietic stem and progenitor cell development by trisomy 21. Proc. Natl Acad. Sci. USA 109, 17579���17584 (2012). [DOI: 10.1073/pnas.1211405109]
  8. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Exp. Hematol. 44, S24 (2016). [DOI: 10.1016/j.exphem.2016.06.010]
  9. Dahl, R. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBP�� ratio and granulocyte colony-stimulating factor. Nat. Immunol. 4, 1029���1036 (2003). [DOI: 10.1038/ni973]
  10. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017). [DOI: 10.1126/science.aah4573]
  11. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758���764 (2007). [DOI: 10.1038/nature05690]
  12. Summers, Y. J., Heyworth, C. M., de Wynter, E. A., Chang, J. & Testa, N. G. Cord blood G CD34 cells have a thousand-fold higher capacity for generating progenitors in vitro than G CD34 cells. Stem Cells 19, 505���513 (2001). [DOI: 10.1634/stemcells.19-6-505]
  13. Pimanda, J. E. et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc. Natl Acad. Sci. USA 104, 17692���17697 (2007). [DOI: 10.1073/pnas.0707045104]
  14. Iwasaki, H. et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106, 1590���1600 (2005). [DOI: 10.1182/blood-2005-03-0860]
  15. Palii, C. G. et al. Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate. Cell Stem Cell 24, 812���820 (2019). [DOI: 10.1016/j.stem.2019.02.006]
  16. Muskens, I. S. et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat. Commun. 12, 821 (2021). [DOI: 10.1038/s41467-021-21064-z]
  17. Yu, S. et al. GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 117, 2166���2178 (2011). [DOI: 10.1182/blood-2010-09-306563]
  18. Sullivan, K. D. et al. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci. Rep. 7, 14818 (2017). [DOI: 10.1038/s41598-017-13858-3]
  19. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38���48 (2020). [DOI: 10.1038/s41556-019-0439-6]
  20. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225���3230 (2007). [DOI: 10.1073/pnas.0611177104]
  21. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323���328 (2014). [DOI: 10.1038/nature13145]
  22. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323���328 (2016). [DOI: 10.1038/nature17624]
  23. Long, M. W., Briddell, R., Walter, A. W., Bruno, E. & Hoffman, R. Human hematopoietic stem cell adherence to cytokines and matrix molecules. J. Clin. Invest. 90, 251���255 (1992). [DOI: 10.1172/JCI115844]
  24. Lane, W. J. et al. Stromal-derived factor 1���induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 96, 4152���4159 (2000). [DOI: 10.1182/blood.V96.13.4152]
  25. Schulz-Knappe, P. et al. HCC-1, a novel chemokine from human plasma. J. Exp. Med. 183, 295���299 (1996). [DOI: 10.1084/jem.183.1.295]
  26. Butko, E., Pouget, C. & Traver, D. Complex regulation of HSC emergence by the Notch signaling pathway. Dev. Biol. 409, 129���138 (2016). [DOI: 10.1016/j.ydbio.2015.11.008]
  27. Mul��, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Preprint at https://doi.org/10.1101/2020.02.24.96360 (2021).

Grants

  1. MC_PC_17230/Medical Research Council
  2. 215116/Wellcome Trust
  3. 216632/Wellcome Trust
  4. 206328/Wellcome Trust
  5. 221052/Wellcome Trust
  6. MR/R006237/1/DBT-Wellcome Trust India Alliance
  7. MR/M008975/1/Medical Research Council
  8. 206194/Wellcome Trust
  9. MR/R006237/1/Medical Research Council
  10. MR/S036113/1/Medical Research Council
  11. WT107931/Z/15/Z/Wellcome Trust
  12. /Wellcome Trust
  13. 107630/Wellcome Trust
  14. MR/N005872/1/Medical Research Council
  15. WT206194/Wellcome Trust
  16. 107630/Z/15/Z/Wellcome Trust
  17. MC_UU_12009/14/Medical Research Council
  18. MR/W014556/1/Medical Research Council
  19. 203151/Z/16/Z/Wellcome Trust
  20. WT211276/Z/18/Z/Wellcome Trust
  21. 216632/Z/19/Z/Wellcome Trust
  22. MR/S036334/1/Medical Research Council
  23. 206328/Z/17/Z/Wellcome Trust
  24. 107931/Wellcome Trust
  25. 211276/Wellcome Trust

MeSH Term

B-Lymphocytes
Bone Marrow
Bone Marrow Cells
Dendritic Cells
Down Syndrome
Endothelial Cells
Eosinophils
Erythroid Cells
Fetus
Granulocytes
Hematopoiesis
Humans
Immune System
Immunity
Myeloid Cells
Stromal Cells

Word Cloud

Similar Articles

Cited By