Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition.

Chanakha K Navaratnarajah, David R Pease, Peter J Halfmann, Biruhalem Taye, Alison Barkhymer, Kyle G Howell, Jon E Charlesworth, Trace A Christensen, Yoshihiro Kawaoka, Roberto Cattaneo, Jay W Schneider, Wanek Family Program for HLHS-Stem Cell Pipeline
Author Information
  1. Chanakha K Navaratnarajah: Department of Molecular Medicine, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA. ORCID
  2. David R Pease: Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  3. Peter J Halfmann: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  4. Biruhalem Taye: Department of Molecular Medicine, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  5. Alison Barkhymer: Department of Molecular Medicine, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  6. Kyle G Howell: Mayo Microscopy and Cell Analysis Core, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  7. Jon E Charlesworth: Mayo Microscopy and Cell Analysis Core, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  8. Trace A Christensen: Mayo Microscopy and Cell Analysis Core, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA.
  9. Yoshihiro Kawaoka: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  10. Roberto Cattaneo: Department of Molecular Medicine, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA. ORCID
  11. Jay W Schneider: Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA. ORCID

Abstract

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.

Keywords

References

  1. EBioMedicine. 2020 Nov;61:103104 [PMID: 33158808]
  2. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  3. Elife. 2021 Apr 09;10: [PMID: 33835028]
  4. Circulation. 2009 May 19;119(19):2615-24 [PMID: 19451363]
  5. Nat Microbiol. 2021 Jul;6(7):899-909 [PMID: 33907312]
  6. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  7. Cardiovasc Pathol. 2021 Jan - Feb;50:107300 [PMID: 33132119]
  8. JAMA Cardiol. 2020 Jul 1;5(7):831-840 [PMID: 32219363]
  9. Cell. 2021 Apr 15;184(8):2167-2182.e22 [PMID: 33811809]
  10. J Mol Cell Cardiol. 2020 Oct;147:12-17 [PMID: 32771409]
  11. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  12. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  13. Circ Res. 2021 Apr 16;128(8):1214-1236 [PMID: 33856918]
  14. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  15. Sci Transl Med. 2021 Apr 21;13(590): [PMID: 33723017]
  16. J Virol. 2001 May;75(9):4399-401 [PMID: 11287589]
  17. Cardiovasc Pathol. 2021 Sep-Oct;54:107370 [PMID: 34273507]
  18. Virology. 1995 Dec 20;214(2):628-32 [PMID: 8553566]
  19. Mol Cell. 2020 May 21;78(4):779-784.e5 [PMID: 32362314]
  20. PLoS Pathog. 2021 Jan 25;17(1):e1009246 [PMID: 33493182]
  21. JAMA Cardiol. 2020 Jul 1;5(7):811-818 [PMID: 32219356]
  22. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  23. PLoS Pathog. 2021 Apr 22;17(4):e1009500 [PMID: 33886690]
  24. Science. 2020 Nov 13;370(6518):861-865 [PMID: 33082294]
  25. Nature. 2021 Mar;591(7849):293-299 [PMID: 33494095]
  26. JACC Basic Transl Sci. 2021 Apr;6(4):331-345 [PMID: 33681537]
  27. J Cell Sci. 2015 Feb 1;128(3):431-9 [PMID: 26046138]
  28. Cell Host Microbe. 2020 Dec 9;28(6):853-866.e5 [PMID: 33245857]
  29. Nature. 2021 Jun;594(7862):240-245 [PMID: 33979833]
  30. PLoS Pathog. 2018 Jun 28;14(6):e1007015 [PMID: 29953542]
  31. J Am Coll Cardiol. 2021 Jan 26;77(3):314-325 [PMID: 33478655]
  32. Science. 1997 Feb 28;275(5304):1320-3 [PMID: 9036860]
  33. Cardiovasc Res. 2020 Dec 1;116(14):2207-2215 [PMID: 32966582]
  34. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  35. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  36. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  37. Nature. 2021 Jun;594(7861):88-93 [PMID: 33827113]
  38. Hypertension. 2020 Nov;76(5):1350-1367 [PMID: 32981369]
  39. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  40. Arch Pathol Lab Med. 1976 Aug;100(8):405-14 [PMID: 60092]
  41. J Virol. 2015 Oct 07;90(1):68-75 [PMID: 26446605]
  42. Ann Saudi Med. 2016 Jan-Feb;36(1):78-80 [PMID: 26922692]
  43. Int J Infect Dis. 2021 Jan;102:70-72 [PMID: 33045427]
  44. Eur J Clin Invest. 2009 Jul;39(7):618-25 [PMID: 19453650]
  45. iScience. 2021 Mar 19;24(3):102170 [PMID: 33585805]
  46. Science. 2020 Oct 23;370(6515):408-409 [PMID: 32967937]
  47. JAMA Cardiol. 2020 Nov 1;5(11):1281-1285 [PMID: 32730555]
  48. Stem Cell Reports. 2021 Mar 9;16(3):478-492 [PMID: 33657418]
  49. Circulation. 2020 Nov 10;142(19):1865-1870 [PMID: 32997947]
  50. Nat Commun. 2020 Aug 6;11(1):3910 [PMID: 32764693]
  51. J Clin Invest. 2008 Aug;118(8):2758-70 [PMID: 18636119]
  52. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  53. Nature. 2020 Oct;586(7830):560-566 [PMID: 32854108]
  54. Eur J Heart Fail. 2020 May;22(5):911-915 [PMID: 32275347]
  55. Int J Legal Med. 2021 Mar;135(2):577-581 [PMID: 33392658]
  56. Viruses. 2012 Apr;4(4):557-80 [PMID: 22590686]
  57. Mod Pathol. 2021 Jul;34(7):1345-1357 [PMID: 33727695]
  58. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  59. J Thorac Oncol. 2020 May;15(5):700-704 [PMID: 32114094]
  60. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  61. Nat Rev Cardiol. 2021 Mar;18(3):169-193 [PMID: 33046850]
  62. EMBO J. 2020 Dec 1;39(23):e106267 [PMID: 33051876]
  63. PLoS Biol. 2020 Jun 8;18(6):e3000715 [PMID: 32511245]
  64. J Biol Chem. 2021 Jul;297(1):100847 [PMID: 34058196]

Grants

  1. HHSN272201400008C/NIAID NIH HHS

MeSH Term

Animals
COVID-19
Cathepsin B
Cell Fusion
Chlorocebus aethiops
Embryonic Stem Cells
Exocytosis
Humans
Induced Pluripotent Stem Cells
Microscopy, Confocal
Myocytes, Cardiac
SARS-CoV-2
Serine Endopeptidases
Spike Glycoprotein, Coronavirus
Vero Cells
Viral Proteins
Virus Internalization
Virus Replication

Chemicals

Spike Glycoprotein, Coronavirus
Viral Proteins
spike protein, SARS-CoV-2
Serine Endopeptidases
TMPRSS2 protein, human
Cathepsin B