SPT6 loss permits the transdifferentiation of keratinocytes into an intestinal fate that resembles Barrett's metaplasia.

Daniella T Vo, MacKenzie R Fuller, Courtney Tindle, Mahitha Shree Anandachar, Soumita Das, Debashis Sahoo, Pradipta Ghosh
Author Information
  1. Daniella T Vo: Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA 92093-0703, USA.
  2. MacKenzie R Fuller: Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA.
  3. Courtney Tindle: Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA.
  4. Mahitha Shree Anandachar: Department of Pathology, University of California San Diego, 9500 Gilman Drive, George E. Palade Bldg, Rm 256, La Jolla, CA 92093, USA.
  5. Soumita Das: HUMANOID Center of Research Excellence (CoRE), University of California San Diego, La Jolla, USA.
  6. Debashis Sahoo: Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA 92093-0703, USA.
  7. Pradipta Ghosh: Departments of Medicine and Cell and Molecular Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, La Jolla, CA 92093, USA.

Abstract

Transient depletion of the transcription elongation factor SPT6 in the keratinocyte has been recently shown to inhibit epidermal differentiation and stratification; instead, they transdifferentiate into a gut-like lineage. We show here that this phenomenon of transdifferentiation recapitulates Barrett's metaplasia, the only human pathophysiologic condition in which a stratified squamous epithelium that is injured due to chronic acid reflux is trans-committed into an intestinal fate. The evidence we present here not only lend support to the notion that the keratinocytes are potentially the cell of origin of Barrett's metaplasia but also provide mechanistic insights linking transient acid exposure, downregulation of SPT6, stalled transcription of the master regulator of epidermal fate TP63, loss of epidermal fate, and metaplastic progression. Because Barrett's metaplasia in the esophagus is a pre-neoplastic condition with no preclinical human models, these findings have a profound impact on the modeling Barrett's metaplasia-in-a-dish.

Keywords

References

  1. Nat Biotechnol. 2011 Nov 13;29(12):1120-7 [PMID: 22081019]
  2. Life Sci Alliance. 2020 Feb 10;3(3): [PMID: 32041849]
  3. Carcinogenesis. 2009 Jan;30(1):122-30 [PMID: 18845559]
  4. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2078-83 [PMID: 22308455]
  5. Mol Cancer Res. 2017 Nov;15(11):1558-1569 [PMID: 28751461]
  6. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  7. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  8. Br J Cancer. 1995 May;71(5):995-8 [PMID: 7734326]
  9. J Clin Invest. 1996 Nov 1;98(9):2120-8 [PMID: 8903332]
  10. Dig Dis Sci. 2018 Aug;63(8):2005-2012 [PMID: 29675663]
  11. J Med Life. 2014;7 Spec No. 3:23-30 [PMID: 25870690]
  12. Cell. 2011 Jun 24;145(7):1023-35 [PMID: 21703447]
  13. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  14. Clin Cancer Res. 2000 Oct;6(10):4033-42 [PMID: 11051253]
  15. Genes Dev. 2006 Nov 15;20(22):3185-97 [PMID: 17114587]
  16. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D562-6 [PMID: 15608262]
  17. Mol Carcinog. 1998 Aug;22(4):222-8 [PMID: 9726814]
  18. Nat Commun. 2021 Feb 4;12(1):784 [PMID: 33542242]
  19. Ann Gastroentol Hepatol. 2010 Jun;1(1):1-10 [PMID: 21552467]
  20. Nature. 2017 Oct 26;550(7677):529-533 [PMID: 29019984]
  21. Am J Physiol Gastrointest Liver Physiol. 2007 Jul;293(1):G45-53 [PMID: 17615180]
  22. Gastroenterology. 2011 Nov;141(5):1762-72 [PMID: 21889923]
  23. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  24. Nat Protoc. 2013 Dec;8(12):2471-82 [PMID: 24232249]
  25. Nucleic Acids Res. 2003 Feb 15;31(4):e15 [PMID: 12582260]
  26. iScience. 2021 Jan 06;24(2):102035 [PMID: 33537654]
  27. Science. 2014 Nov 21;346(6212):937-40 [PMID: 25414300]
  28. Gastroenterology. 2019 Aug;157(2):349-364.e1 [PMID: 31082367]
  29. Nat Rev Gastroenterol Hepatol. 2015 Jan;12(1):50-60 [PMID: 25365976]
  30. Gut. 2013 Dec;62(12):1676-83 [PMID: 23256952]
  31. Cell. 2007 May 4;129(3):523-36 [PMID: 17482546]
  32. Gastroenterology. 2002 Feb;122(2):299-307 [PMID: 11832445]
  33. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  34. Gut. 2006 Dec;55(12):1810-20 [PMID: 17124160]
  35. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  36. Nature. 1999 Apr 22;398(6729):714-8 [PMID: 10227294]
  37. Nat Commun. 2021 Jul 12;12(1):4246 [PMID: 34253728]
  38. Ann N Y Acad Sci. 2011 Sep;1232:381-91 [PMID: 21950830]
  39. Science. 2021 Aug 13;373(6556):760-767 [PMID: 34385390]
  40. Oncogene. 2006 Jun 1;25(23):3346-56 [PMID: 16449976]
  41. Oncogene. 1999 Jan 28;18(4):987-93 [PMID: 10023674]
  42. Gut. 2020 Nov 24;: [PMID: 33234525]
  43. Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655 [PMID: 29145629]
  44. Annu Rev Pathol. 2010;5:349-71 [PMID: 20078223]
  45. Gastroenterology. 2012 Jun;142(7):1424-30 [PMID: 22537611]
  46. N Engl J Med. 2016 Jan 21;374(3):211-22 [PMID: 26789870]
  47. Genome Biol. 2008 Oct 30;9(10):R157 [PMID: 18973690]
  48. Am J Physiol Cell Physiol. 2004 Jul;287(1):C171-81 [PMID: 15189821]
  49. Adv Exp Med Biol. 2019;1123:55-69 [PMID: 31016595]
  50. Dev Cell. 2017 Nov 20;43(4):387-401 [PMID: 29161590]
  51. PLoS One. 2008;3(10):e3534 [PMID: 18953412]
  52. Dig Dis Sci. 2011 Dec;56(12):3405-20 [PMID: 21984436]

Grants

  1. T32 GM008806/NIGMS NIH HHS
  2. R01 CA238042/NCI NIH HHS
  3. R01 CA100768/NCI NIH HHS
  4. R01 CA160911/NCI NIH HHS
  5. R01 DK107585/NIDDK NIH HHS
  6. R01 AI141630/NIAID NIH HHS
  7. R01 GM138385/NIGMS NIH HHS
  8. UG3 TR002968/NCATS NIH HHS
  9. UG3 TR003355/NCATS NIH HHS
  10. R01 AI155696/NIAID NIH HHS

Word Cloud

Similar Articles

Cited By