Ando N (2018) Diversity of flight control strategies in insects: Lessons from hawkmoths. Comp Physiol Biochem 35: 108–118 (in Japanese)
AritaY, Inomata T, Ikeda M (1994) Sesiidae of Japan. Yadoriga 159: 2–29 (in Japanese)
Binetti VR, Schiffman JD, Leaffer OD, Spanier JE, Schauer CL (2009) The natural transparency and piezoelectric response of the butterfly wing. Integr Biol 1: 324–329
Dinwiddie A, Ryan N, Maria P, Lisa C, Alexis LK, Hwei ET, et al. (2014) Dynamics of F-actin prefigure the structure of butterfly wing scales. Dev Biol 392: 404–418
Dorsett DA (1962) Preparation for flight by hawk-moths. J Exp Biol 39: 79–88
Downey JC, Allyn AC (1975) Wing scale morphology and nomenclature. Bull Allyn Mus 31: 1–32
Eisner T, Alsop R, Ettershank G (1964) Adhesiveness of spider silk. Science 146: 1058–1061
Ghiradella H (1998) Hairs, bristles, and scales. In“ Microscopic Anatomy of Invertebrates” Ed by FW Harrison, M Locke, John Wiley and Sons, Hoboken, pp 257–287
Goodwyn PP, Maezono Y, Hosoda N, Fujisaki K (2009) Waterproof and translucent wings at the same time: problems and solutions in butterflies. Naturwissenschaften 96: 781–787
Heinrich B, Bartholomew GA (1971) An analysis of pre-flight warmup in the sphinx moth, . J Exp Biol 55: 223–239
Hennig S (1992) Getting to know moths: Hawk moths, sphinx moths. Metamorphosis 3: 32–34
Inoue H, Okano M, Shirozu T, Sugi S, Yamamoto H (1959) Insect Full-color Encyclopedia 1 (Lepidoptera). Hokuryukan, Tokyo, pp 183–184 (in Japanese)
Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis. Nat Rev Mol Cell Biol 2: 545–550
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682
Siddique RH, Gomard G, Hölscher H (2015) The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat Commun 6: 6909
Simonsen TJ, Kristensen NP (2003) Scale length/wing length correlation in Lepidoptera (Insecta). J Nat Hist 37: 673–679
Stavenga DG, Matsushita A, Arikawa K, Leertouwer HL, Wilts BD (2012) Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors. J Exp Biol 215: 657–662
Stossberg M (1937) Über die Entwicklung der Schmetterlingsschuppen. Biol Zbl 57: 393–402
Süffert F (1937) Die Geschichte der Bildungszellen im Puppenflügelepithel bei einem Tagschmetterling. Biol Zbl 57: 615–628
Truman JW, Endo PT (1974) Physiology of insect ecdysis: neural and hormonal factors involved in wing-spreading behavior of moths. J Exp Biol 61: 47–55
Wanasekara ND, Chalivendra VB (2011) Role of surface roughness on wettability and coefficient of restitution in butterfly wings. Soft Matter 7: 373–379
Warrick DR, Toblaske BW, Powers DR (2005) Aerodynamics of the hovering hummingbird. Nature 435: 1094–1097
Yoshida A (2002) Antireflection of the butterfly and moth wings through microstructure. Forma 17: 75–89
Yoshida A, Motoyama M, Kosaku A, Miyamoto K (1996) Nanoprotuberance array in the transparent wing of a hawkmoth, . Zool Sci 13: 525–526
Yoshida A, Motoyama M, Kosaku A, Miyamoto K (1997) Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, . Zool Sci 14: 737–741
Yoshida A, Tejima S, Sakuma M, Sakamaki Y, Kodama R (2017) Coherent array of branched filamentary scales along the wing margin of a small moth. Sci Nat 104: 27