The SARS-CoV-2 main protease M causes microvascular brain pathology by cleaving NEMO in brain endothelial cells.

Jan Wenzel, Josephine Lampe, Helge Müller-Fielitz, Raphael Schuster, Marietta Zille, Kristin Müller, Markus Krohn, Jakob Körbelin, Linlin Zhang, Ümit Özorhan, Vanessa Neve, Julian U G Wagner, Denisa Bojkova, Mariana Shumliakivska, Yun Jiang, Anke Fähnrich, Fabian Ott, Valentin Sencio, Cyril Robil, Susanne Pfefferle, Florent Sauve, Caio Fernando Ferreira Coêlho, Jonas Franz, Frauke Spiecker, Beate Lembrich, Sonja Binder, Nina Feller, Peter König, Hauke Busch, Ludovic Collin, Roberto Villaseñor, Olaf Jöhren, Hermann C Altmeppen, Manolis Pasparakis, Stefanie Dimmeler, Jindrich Cinatl, Klaus Püschel, Matija Zelic, Dimitry Ofengeim, Christine Stadelmann, François Trottein, Ruben Nogueiras, Rolf Hilgenfeld, Markus Glatzel, Vincent Prevot, Markus Schwaninger
Author Information
  1. Jan Wenzel: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  2. Josephine Lampe: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  3. Helge Müller-Fielitz: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  4. Raphael Schuster: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  5. Marietta Zille: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  6. Kristin Müller: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  7. Markus Krohn: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  8. Jakob Körbelin: Department of Oncology, Hematology & Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  9. Linlin Zhang: Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany.
  10. Ümit Özorhan: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  11. Vanessa Neve: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  12. Julian U G Wagner: DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel and Frankfurt, Germany.
  13. Denisa Bojkova: Institute of Medical Virology, University Frankfurt, Frankfurt, Germany.
  14. Mariana Shumliakivska: Institute for Cardiovascular Regeneration, Cardiopulmonary Institute (CPI), University Frankfurt, Frankfurt, Germany.
  15. Yun Jiang: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  16. Anke Fähnrich: Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
  17. Fabian Ott: Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
  18. Valentin Sencio: Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France. ORCID
  19. Cyril Robil: Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France. ORCID
  20. Susanne Pfefferle: Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  21. Florent Sauve: Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, EGID, Lille, France.
  22. Caio Fernando Ferreira Coêlho: Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, EGID, Lille, France.
  23. Jonas Franz: Institute of Neuropathology, University Medical Center, Göttingen, Germany. ORCID
  24. Frauke Spiecker: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  25. Beate Lembrich: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  26. Sonja Binder: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  27. Nina Feller: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
  28. Peter König: Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany.
  29. Hauke Busch: Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
  30. Ludovic Collin: Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Basel, Switzerland.
  31. Roberto Villaseñor: Roche Pharma Research and Early Development (pRED), Roche Innovation Center, Basel, Switzerland.
  32. Olaf Jöhren: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. ORCID
  33. Hermann C Altmeppen: Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  34. Manolis Pasparakis: Institute for Genetics, University of Cologne, Cologne, Germany. ORCID
  35. Stefanie Dimmeler: DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel and Frankfurt, Germany.
  36. Jindrich Cinatl: Institute of Medical Virology, University Frankfurt, Frankfurt, Germany.
  37. Klaus Püschel: Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  38. Matija Zelic: Rare and Neurologic Diseases Research, Sanofi, Framingham, MA, USA.
  39. Dimitry Ofengeim: Rare and Neurologic Diseases Research, Sanofi, Framingham, MA, USA.
  40. Christine Stadelmann: Institute of Neuropathology, University Medical Center, Göttingen, Germany.
  41. François Trottein: Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France.
  42. Ruben Nogueiras: Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain. ORCID
  43. Rolf Hilgenfeld: Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany.
  44. Markus Glatzel: Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ORCID
  45. Vincent Prevot: Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, EGID, Lille, France. ORCID
  46. Markus Schwaninger: Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany. markus.schwaninger@uni-luebeck.de. ORCID

Abstract

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (M) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, M induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the M-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.

References

  1. Helms, J. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270 (2020). [PMID: 32294339]
  2. Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120 (2020). [PMID: 32637987]
  3. Iadecola, C., Anrather, J. & Kamel, H. Effects of COVID-19 on the nervous system. Cell 183, 16–27 (2020). [PMID: 32882182]
  4. Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021). [PMID: 33753937]
  5. Paniz-Mondolfi, A. et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 92, 699–702 (2020). [PMID: 32314810]
  6. Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020). [PMID: 32402155]
  7. Andersson, M. I. et al. SARS-CoV-2 RNA detected in blood samples from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 5, 181 (2020). [PMID: 33283055]
  8. Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020). [PMID: 33082293]
  9. Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175 (2021). [PMID: 33257876]
  10. Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med. 218, e20202135 (2021). [PMID: 33433624]
  11. Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 383, 120–128 (2020). [PMID: 32437596]
  12. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020). [PMID: 32325026]
  13. Radmanesh, A. et al. COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology 297, E223–E227 (2020). [PMID: 32437314]
  14. Conte, G. et al. COVID-19-associated PRES-like encephalopathy with perivascular gadolinium enhancement. AJNR Am. J. Neuroradiol. 41, 2206–2208 (2020). [PMID: 32816769]
  15. Conklin, J. et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19. J. Neurol. Sci. 421, 117308 (2021). [PMID: 33497950]
  16. Jaunmuktane, Z. et al. Microvascular injury and hypoxic damage: emerging neuropathological signatures in COVID-19. Acta Neuropathol. 140, 397–400 (2020). [PMID: 32638079]
  17. Reichard, R. R. et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140, 1–6 (2020). [PMID: 32449057]
  18. Koralnik, I. J. & Tyler, K. L. COVID-19: a global threat to the nervous system. Ann. Neurol. 88, 1–11 (2020). [PMID: 32506549]
  19. Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a postmortem case series. Lancet Neurol. 19, 919–929 (2020). [PMID: 33031735]
  20. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 368, 409–412 (2020). [PMID: 32198291]
  21. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev. Immunol. 32, 461–488 (2014). [PMID: 24655297]
  22. Kondylis, V., Kumari, S., Vlantis, K. & Pasparakis, M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol. Rev. 277, 113–127 (2017). [PMID: 28462531]
  23. Brown, W. R. A review of string vessels or collapsed, empty basement membrane tubes. J. Alzheimers Dis. 21, 725–739 (2010). [PMID: 20634580]
  24. Shilts, J., Crozier, T. W. M., Greenwood, E. J. D., Lehner, P. J. & Wright, G. J. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci. Rep. 11, 413 (2021). [PMID: 33432067]
  25. Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004). [PMID: 15141377]
  26. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020). [PMID: 32142651]
  27. Wang, K. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target Ther. 5, 283 (2020). [PMID: 33277466]
  28. Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018). [PMID: 29227469]
  29. He, L. et al. Pericyte-specific vascular expression of SARS-CoV-2 receptor ACE2—implications for microvascular inflammation and hypercoagulopathy in COVID-19. Preprint at bioRxiv https://doi.org/10.1101/2020.05.11.088500 (2020).
  30. Kaneko, N. et al. Flow-mediated susceptibility and molecular response of cerebral endothelia to SARS-CoV-2 infection. Stroke 52, 260–270 (2021). [PMID: 33161843]
  31. McCracken, I. R. et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS-CoV-2 in human endothelial cells. Circulation 143, 865–868 (2021). [PMID: 33405941]
  32. Conde, J. N., Schutt, W. R., Gorbunova, E. E. & Mackow, E. R. Recombinant ACE2 expression is required for SARS-CoV-2 to infect primary human endothelial cells and induce inflammatory and procoagulative responses. mBio 11, e03185–03120 (2020).
  33. Krichel, B., Falke, S., Hilgenfeld, R., Redecke, L. & Uetrecht, C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem. J. 477, 1009–1019 (2020). [PMID: 32083638]
  34. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020). [PMID: 32661059]
  35. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020). [PMID: 32353859]
  36. Körbelin, J. et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol. Med. 8, 609–625 (2016). [PMID: 27137490]
  37. Ridder, D. A. et al. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J. Exp. Med. 212, 1529–1549 (2015). [PMID: 26347470]
  38. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018). [PMID: 29769726]
  39. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011). [PMID: 21804564]
  40. Mifflin, L., Ofengeim, D. & Yuan, J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571 (2020). [PMID: 32669658]
  41. Villaseñor, R. et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood–brain barrier. Sci. Rep. 6, 25658 (2016). [PMID: 27149947]
  42. Martens, S., Hofmans, S., Declercq, W., Augustyns, K. & Vandenabeele, P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol. Sci. 41, 209–224 (2020). [PMID: 32035657]
  43. Alarcon-Martinez, L. et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 585, 91–95 (2020). [PMID: 32788726]
  44. Gao, X. et al. Reduction of neuronal activity mediated by blood-vessel regression in the brain. Preprint at bioRxiv https://doi.org/10.1101/2020.09.15.262782 (2020).
  45. Colmenero, I. et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 183, 729–737 (2020). [PMID: 32562567]
  46. Yeung, M. L. et al. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin–angiotensin system. Cell 184, 2212–2228 (2021). [PMID: 33713620]
  47. Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865 (2020). [PMID: 33082294]
  48. Zhang, J. et al. A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins. Signal Transduct. Target. Ther. 5, 269 (2020). [PMID: 33203855]
  49. Miyamoto, S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Res. 21, 116–130 (2011). [PMID: 21187855]
  50. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020). [PMID: 32788292]
  51. Wang, D. et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO. J. Virol. 90, 2090–2101 (2016). [PMID: 26656704]
  52. Zhu, X. et al. Porcine deltacoronavirus nsp5 inhibits interferon-beta production through the cleavage of NEMO. Virology 502, 33–38 (2017). [PMID: 27984784]
  53. Chen, S. et al. Feline infectious peritonitis virus Nsp5 inhibits type I interferon production by cleaving NEMO at multiple sites. Viruses 12, 43 (2019). [>PMCID: ]
  54. Gareus, R. et al. Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis. Cell Metab. 8, 372–383 (2008). [PMID: 19046569]
  55. van Loo, G. et al. Inhibition of transcription factor NF-kB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat. Immunol. 7, 954–961 (2006). [PMID: 16892069]
  56. Meuwissen, M. E. & Mancini, G. M. Neurological findings in incontinentia pigmenti; a review. Eur. J. Med. Genet. 55, 323–331 (2012). [PMID: 22564885]
  57. Kanberg, N. et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95, e1754–e1759 (2020). [PMID: 32546655]
  58. Senatorov, V. V. Jr. et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. 11, eaaw8283 (2019). [PMID: 31801886]
  59. Nampoothiri, S. et al. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. Preprint at bioRxiv https://doi.org/10.1101/2020.06.08.139329 (2020).
  60. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000). [PMID: 10911992]
  61. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007). [PMID: 17292824]
  62. Ridder, D. A. et al. TAK1 in brain endothelial cells mediates fever and lethargy. J. Exp. Med. 208, 2615–2623 (2011). [PMID: 22143887]
  63. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B cell and T cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell. Biol. 24, 1464–1469 (2004). [PMID: 14749364]
  64. Zelic, M. et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 35, 109112 (2021). [PMID: 33979622]
  65. Wang, W. et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell 34, 757–774 (2018). [PMID: 30423296]
  66. Qin, J. Y. et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5, e10611 (2010). [PMID: 20485554]
  67. Dogbevia, G. K. et al. Gene therapy decreases seizures in a model of incontinentia pigmenti. Ann. Neurol. 82, 93–104 (2017). [PMID: 28628231]
  68. Korte, J., Mienert, J., Hennigs, J. K. & Korbelin, J. Inactivation of adeno-associated viral vectors by oxidant-based disinfectants. Hum. Gene Ther. 32, 771–781 (2021). [PMID: 33023320]
  69. Dogbevia, G., Grasshoff, H., Othman, A., Penno, A. & Schwaninger, M. Brain endothelial specific gene therapy improves experimental Sandhoff disease. J. Cereb. Blood Flow Metab. 40, 1338–1350 (2020). [PMID: 31357902]
  70. Bojkova, D. et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583, 469–472 (2020). [PMID: 32408336]
  71. Hoehl, S. et al. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. N. Engl. J. Med. 382, 1278–1280 (2020). [PMID: 32069388]
  72. Pfefferle, S. et al. Complete genome sequence of a SARS-CoV-2 strain isolated in northern Germany. Microbiol. Resour. Announc. 9, e00520-20 (2020).
  73. Fan, H. C., Fu, G. K. & Fodor, S. P. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015). [PMID: 25657253]
  74. Munawar, A. et al. Elapid snake venom analyses show the specificity of the peptide composition at the level of genera Naja and Notechis. Toxins 6, 850–868 (2014). [PMID: 24590383]
  75. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). [DOI: 10.1038/nbt.1511]
  76. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012). [PMID: 22373911]
  77. Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016). [PMID: 27064647]
  78. Gaehtgens, P. Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 17, 183–189 (1980). [PMID: 7407348]
  79. Hunziker, O., Abdel’Al, S. & Schulz, U. The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J. Gerontol. 34, 345–350 (1979). [PMID: 429767]
  80. Jiang, Y. et al. Cerebral angiogenesis ameliorates pathological disorders in Nemo-deficient mice with small-vessel disease. J. Cereb. Blood Flow Metab. 41, 219–235 (2021). [PMID: 32151223]

Grants

  1. 810331/European Research Council

MeSH Term

Animals
Blood-Brain Barrier
Brain
Chlorocebus aethiops
Coronavirus 3C Proteases
Cricetinae
Female
Humans
Intracellular Signaling Peptides and Proteins
Male
Mesocricetus
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Microvessels
SARS-CoV-2
Vero Cells

Chemicals

Intracellular Signaling Peptides and Proteins
NEMO protein, mouse
Coronavirus 3C Proteases

Word Cloud

Similar Articles

Cited By