High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height.

Shouchuang Wang, Yong Xiao, Zhi-Wei Zhou, Jiaqing Yuan, Hao Guo, Zhuang Yang, Jun Yang, Pengchuan Sun, Lisong Sun, Yuan Deng, Wen-Zhao Xie, Jia-Ming Song, Muhammad Tahir Ul Qamar, Wei Xia, Rui Liu, Shufang Gong, Yong Wang, Fuyou Wang, Xianqing Liu, Alisdair R Fernie, Xiyin Wang, Haikuo Fan, Ling-Ling Chen, Jie Luo
Author Information
  1. Shouchuang Wang: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  2. Yong Xiao: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  3. Zhi-Wei Zhou: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  4. Jiaqing Yuan: College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
  5. Hao Guo: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  6. Zhuang Yang: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  7. Jun Yang: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  8. Pengchuan Sun: Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.
  9. Lisong Sun: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  10. Yuan Deng: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  11. Wen-Zhao Xie: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
  12. Jia-Ming Song: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
  13. Muhammad Tahir Ul Qamar: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
  14. Wei Xia: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  15. Rui Liu: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  16. Shufang Gong: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  17. Yong Wang: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  18. Fuyou Wang: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  19. Xianqing Liu: College of Tropical Crops, Hainan University, Haikou, 570228, China.
  20. Alisdair R Fernie: Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
  21. Xiyin Wang: Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China. wangxiyin@vip.sina.com.
  22. Haikuo Fan: Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China. venheco@163.com.
  23. Ling-Ling Chen: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China. llchen@gxu.edu.cn.
  24. Jie Luo: College of Tropical Crops, Hainan University, Haikou, 570228, China. jie.luo@hainanu.edu.cn. ORCID

Abstract

BACKGROUND: Coconut is an important tropical oil and fruit crop whose evolutionary position renders it a fantastic species for the investigation of the evolution of monocot chromosomes and the subsequent differentiation of ancient plants.
RESULTS: Here, we report the assembly and annotation of reference-grade genomes of Cn. tall and Cn. dwarf, whose genome sizes are 2.40 Gb and 2.39 Gb, respectively. The comparative analysis reveals that the two coconut subspecies diverge about 2-8 Mya while the conserved Arecaceae-specific whole-genome duplication (ω WGD) occurs approximately 47-53 Mya. It additionally allows us to reconstruct the ancestral karyotypes of the ten ancient monocot chromosomes and the evolutionary trajectories of the 16 modern coconut chromosomes. Fiber synthesis genes in Cn. tall, related to lignin and cellulose synthesis, are found at a higher copy number and expression level than dwarf coconuts. Integrated multi-omics analysis reveals that the difference in coconut plant height is the result of altered gibberellin metabolism, with both the GA20ox copy number and a single-nucleotide change in the promoter together leading to the difference in plant height between Cn. tall and Cn. dwarf.
CONCLUSION: We provide high-quality coconut genomes and reveal the genetic basis of trait differences between two coconuts through multi-omics analysis. We also reveal that the selection of plant height has been targeted for the same gene for millions of years, not only in natural selection of ancient plant as illustrated in coconut, but also for artificial selection in cultivated crops such as rice and maize.

References

  1. Nat Genet. 2019 Jun;51(6):1052-1059 pubmed:31152161
  2. Bioinformatics. 2010 Mar 1;26(5):589-95 pubmed:20080505
  3. Nucleic Acids Res. 2010 Dec;38(22):e199 pubmed:20880995
  4. Ann Bot. 2014 Mar;113(4):565-70 pubmed:24368197
  5. Bioinformatics. 2006 May 15;22(10):1269-71 pubmed:16543274
  6. Nat Genet. 2015 Dec;47(12):1435-42 pubmed:26523774
  7. Plant J. 2017 Feb;89(3):617-635 pubmed:27754575
  8. Nature. 2007 Sep 27;449(7161):463-7 pubmed:17721507
  9. Genome Biol. 2021 Nov 4;22(1):304 pubmed:34736486
  10. Mob DNA. 2015 Jun 02;6:11 pubmed:26045719
  11. Nat Commun. 2014;5:3311 pubmed:24548928
  12. Nature. 2002 Apr 18;416(6882):701-2 pubmed:11961544
  13. Commun Biol. 2021 Jan 22;4(1):105 pubmed:33483627
  14. Nucleic Acids Res. 2016 May 19;44(9):e89 pubmed:26893356
  15. Nat Biotechnol. 2011 May 15;29(7):644-52 pubmed:21572440
  16. Bioinformatics. 2014 May 1;30(9):1312-3 pubmed:24451623
  17. Nucleic Acids Res. 2013 Jul;41(12):e121 pubmed:23598997
  18. Nat Commun. 2013;4:2274 pubmed:23917264
  19. Nature. 2020 Jan;577(7788):79-84 pubmed:31853069
  20. Nat Biotechnol. 2019 Aug;37(8):907-915 pubmed:31375807
  21. Genome Biol. 2019 Dec 16;20(1):277 pubmed:31842948
  22. Mol Biol Evol. 2007 Aug;24(8):1586-91 pubmed:17483113
  23. Nat Plants. 2020 Mar;6(3):215-222 pubmed:32094642
  24. G3 (Bethesda). 2019 Aug 8;9(8):2377-2393 pubmed:31167834
  25. Nat Commun. 2019 Nov 14;10(1):5158 pubmed:31727887
  26. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71 pubmed:17878302
  27. Hum Genet. 2012 May;131(5):747-56 pubmed:22143225
  28. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25 pubmed:14534192
  29. Plant Cell. 1997 Aug;9(8):1435-43 pubmed:9286112
  30. Bioinformatics. 2015 Oct 1;31(19):3210-2 pubmed:26059717
  31. PLoS One. 2011;6(6):e21143 pubmed:21731660
  32. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 pubmed:14500829
  33. Nat Biotechnol. 2015 Mar;33(3):290-5 pubmed:25690850
  34. Nat Genet. 2010 Apr;42(4):348-54 pubmed:20208533
  35. Nat Genet. 2017 Apr;49(4):490-496 pubmed:28288112
  36. New Phytol. 2015 Jan;205(1):378-89 pubmed:25138576
  37. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 pubmed:28387841
  38. Bioinformatics. 2020 Apr 1;36(7):2253-2255 pubmed:31778144
  39. Nat Commun. 2020 Oct 28;11(1):5441 pubmed:33116138
  40. BMC Bioinformatics. 2011 Aug 04;12:323 pubmed:21816040
  41. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 pubmed:10592178
  42. Nat Biotechnol. 2019 Jul;37(7):744-754 pubmed:31209375
  43. PLoS One. 2016 Mar 14;11(3):e0151309 pubmed:26974540
  44. Bioinformatics. 2009 May 1;25(9):1105-11 pubmed:19289445
  45. Nat Genet. 2021 Feb;53(2):243-253 pubmed:33526925
  46. Plant Physiol. 2004 Mar;134(3):1123-34 pubmed:14988475
  47. Rice (N Y). 2013 Feb 06;6(1):4 pubmed:24280374
  48. Genome Biol. 2019 Nov 14;20(1):238 pubmed:31727128
  49. BMC Bioinformatics. 2006 Oct 12;7:447 pubmed:17038171
  50. Plant Physiol. 2004 Apr;134(4):1642-53 pubmed:15075394
  51. Bioinformatics. 2001 Sep;17(9):847-8 pubmed:11590104
  52. Nature. 2012 Aug 9;488(7410):213-7 pubmed:22801500
  53. Genome. 2000 Feb;43(1):15-21 pubmed:10701108
  54. Plant Physiol. 2003 Jan;131(1):335-44 pubmed:12529541
  55. Nature. 1956 Dec 22;178(4547):1403-4 pubmed:13387729
  56. Bioinformatics. 2011 Mar 15;27(6):764-70 pubmed:21217122
  57. Nat Biotechnol. 2013 Dec;31(12):1119-25 pubmed:24185095
  58. Nature. 2013 Aug 15;500(7462):335-9 pubmed:23883927
  59. Nat Biotechnol. 2011 May 29;29(6):521-7 pubmed:21623354
  60. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 pubmed:17485477
  61. Genome Biol. 2008 Jan 11;9(1):R7 pubmed:18190707
  62. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 pubmed:10592173
  63. Nat Genet. 2019 May;51(5):865-876 pubmed:31043757
  64. Nat Genet. 2015 Jul;47(7):827-33 pubmed:25985140
  65. Genome Biol. 2015 Dec 01;16:259 pubmed:26619908
  66. Curr Opin Struct Biol. 1998 Jun;8(3):346-54 pubmed:9666331
  67. Gigascience. 2017 Nov 1;6(11):1-11 pubmed:29048487
  68. J Mol Biol. 1990 Oct 5;215(3):403-10 pubmed:2231712
  69. Nat Commun. 2017 Nov 2;8(1):1279 pubmed:29093472
  70. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 pubmed:15034147

MeSH Term

Biosynthetic Pathways
Chromosomes, Plant
Cocos
Evolution, Molecular
Genome, Plant
Genomics
Karyotype