Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor-binding domain in engineered Komagataella phaffii.

Neil C Dalvie, Andrew M Biedermann, Sergio A Rodriguez-Aponte, Christopher A Naranjo, Harish D Rao, Meghraj P Rajurkar, Rakesh R Lothe, Umesh S Shaligram, Ryan S Johnston, Laura E Crowell, Seraphin Castelino, Mary K Tracey, Charles A Whittaker, J Christopher Love
Author Information
  1. Neil C Dalvie: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ORCID
  2. Andrew M Biedermann: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ORCID
  3. Sergio A Rodriguez-Aponte: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  4. Christopher A Naranjo: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  5. Harish D Rao: Serum Institute of India Pvt. Ltd., Pune, India.
  6. Meghraj P Rajurkar: Serum Institute of India Pvt. Ltd., Pune, India.
  7. Rakesh R Lothe: Serum Institute of India Pvt. Ltd., Pune, India.
  8. Umesh S Shaligram: Serum Institute of India Pvt. Ltd., Pune, India.
  9. Ryan S Johnston: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  10. Laura E Crowell: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ORCID
  11. Seraphin Castelino: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  12. Mary K Tracey: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  13. Charles A Whittaker: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  14. J Christopher Love: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. ORCID

Abstract

Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5X by alleviating protein folding stress. Removal of methanol from the production process enabled to scale up to a 1200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.

Keywords

References

  1. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  2. Cell. 2020 Aug 6;182(3):722-733.e11 [PMID: 32645327]
  3. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  4. Curr Opin Biotechnol. 2018 Oct;53:50-58 [PMID: 29277062]
  5. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  6. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  7. Hum Vaccin Immunother. 2020 Jun 2;16(6):1239-1242 [PMID: 32298218]
  8. Biotechnol Bioeng. 2020 Feb;117(2):543-555 [PMID: 31654411]
  9. Proc Natl Acad Sci U S A. 2021 Sep 21;118(38): [PMID: 34493582]
  10. Hum Vaccin Immunother. 2021 Aug 3;17(8):2356-2366 [PMID: 33847226]
  11. Biotechnol Bioeng. 2022 Feb;119(2):657-662 [PMID: 34780057]
  12. Cell. 2020 Nov 25;183(5):1367-1382.e17 [PMID: 33160446]
  13. Vaccine. 2020 Nov 25;38(50):7892-7896 [PMID: 33139139]
  14. Biotechnol Biofuels. 2021 Jul 20;14(1):160 [PMID: 34284814]
  15. ACS Synth Biol. 2020 Jan 17;9(1):26-35 [PMID: 31825599]
  16. Biotechnol Bioeng. 2018 Apr;115(4):1037-1050 [PMID: 29280481]
  17. Science. 2021 Feb 12;371(6530):735-741 [PMID: 33436524]
  18. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  19. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272677]
  20. Curr Opin Chem Biol. 2015 Dec;29:94-9 [PMID: 26517567]
  21. Microb Cell Fact. 2012 Aug 08;11:103 [PMID: 22873405]
  22. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  23. Appl Microbiol Biotechnol. 2014 Jun;98(12):5301-17 [PMID: 24743983]
  24. Biotechnol Bioeng. 2018 Jan;115(1):103-113 [PMID: 28865117]
  25. Nat Commun. 2021 Jan 14;12(1):372 [PMID: 33446655]

Grants

  1. P30-CA14051/NCI NIH HHS
  2. P30 CA014051/NCI NIH HHS
  3. INV-002740/Bill & Melinda Gates Foundation
  4. INV-006131/Bill & Melinda Gates Foundation

Word Cloud

Similar Articles

Cited By