Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion.

Valeria Fumagalli, Micol Ravà, Davide Marotta, Pietro Di Lucia, Chiara Laura, Eleonora Sala, Marta Grillo, Elisa Bono, Leonardo Giustini, Chiara Perucchini, Marta Mainetti, Alessandro Sessa, José M Garcia-Manteiga, Lorena Donnici, Lara Manganaro, Serena Delbue, Vania Broccoli, Raffaele De Francesco, Patrizia D'Adamo, Mirela Kuka, Luca G Guidotti, Matteo Iannacone
Author Information
  1. Valeria Fumagalli: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  2. Micol Ravà: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  3. Davide Marotta: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  4. Pietro Di Lucia: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  5. Chiara Laura: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  6. Eleonora Sala: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  7. Marta Grillo: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  8. Elisa Bono: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
  9. Leonardo Giustini: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  10. Chiara Perucchini: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  11. Marta Mainetti: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  12. Alessandro Sessa: Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  13. José M Garcia-Manteiga: Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  14. Lorena Donnici: INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi", Milan, Italy. ORCID
  15. Lara Manganaro: INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi", Milan, Italy.
  16. Serena Delbue: Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy. ORCID
  17. Vania Broccoli: Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  18. Raffaele De Francesco: INGM - Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi", Milan, Italy. ORCID
  19. Patrizia D'Adamo: Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  20. Mirela Kuka: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  21. Luca G Guidotti: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID
  22. Matteo Iannacone: Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. ORCID

Abstract

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model’s usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2–infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.

References

  1. Nature. 2019 Oct;574(7777):200-205 [PMID: 31582858]
  2. Brain Pathol. 2020 Nov;30(6):1012-1016 [PMID: 32762083]
  3. Nat Neurosci. 2021 Feb;24(2):168-175 [PMID: 33257876]
  4. Genome Biol. 2010;11(3):R25 [PMID: 20196867]
  5. Nucleic Acids Res. 2019 May 7;47(8):e47 [PMID: 30783653]
  6. BMC Infect Dis. 2021 May 28;21(1):496 [PMID: 34049515]
  7. Cells Tissues Organs. 2020;209(4-6):155-164 [PMID: 33486479]
  8. Am J Respir Cell Mol Biol. 2004 Sep;31(3):373-4 [PMID: 15317683]
  9. Cell Discov. 2021 Jul 6;7(1):49 [PMID: 34230457]
  10. J Thromb Haemost. 2020 Jun;18(6):1517-1519 [PMID: 32294295]
  11. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  12. Otolaryngol Head Neck Surg. 2020 Oct;163(4):714-721 [PMID: 32539586]
  13. Acta Neuropathol. 2020 Jul;140(1):1-6 [PMID: 32449057]
  14. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14695-700 [PMID: 9405675]
  15. N Engl J Med. 2020 Aug 6;383(6):590-592 [PMID: 32402155]
  16. Lancet. 2020 Aug 1;396(10247):320-332 [PMID: 32682491]
  17. EMBO J. 2020 Oct 15;39(20):e106230 [PMID: 32876341]
  18. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  19. Viruses. 2021 Jan 19;13(1): [PMID: 33477869]
  20. Lancet Digit Health. 2021 Sep;3(9):e577-e586 [PMID: 34305035]
  21. Cell. 2020 Nov 12;183(4):1070-1085.e12 [PMID: 33031744]
  22. Nat Rev Neurosci. 2005 Oct;6(10):775-86 [PMID: 16163382]
  23. iScience. 2020 Dec 18;23(12):101839 [PMID: 33251489]
  24. Nature. 2020 Oct;586(7830):509-515 [PMID: 32967005]
  25. Cell. 2015 Apr 23;161(3):486-500 [PMID: 25892224]
  26. Cell. 2020 Oct 1;183(1):16-27.e1 [PMID: 32882182]
  27. J Exp Med. 2021 Mar 1;218(3): [PMID: 33433624]
  28. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):629-34 [PMID: 18184798]
  29. Ann Intern Med. 2020 Sep 1;173(5):350-361 [PMID: 32422076]
  30. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  31. ACS Chem Neurosci. 2020 Jun 3;11(11):1555-1562 [PMID: 32379417]
  32. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  33. Clin Infect Dis. 2021 Jul 15;73(2):e503-e512 [PMID: 32667973]
  34. Blood Adv. 2021 Sep 28;5(18):3568-3580 [PMID: 34546355]
  35. ACS Chem Neurosci. 2020 Jul 1;11(13):1909-1913 [PMID: 32525657]
  36. PLoS One. 2015 Jun 26;10(6):e0131451 [PMID: 26115403]
  37. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  38. N Engl J Med. 2020 Jun 4;382(23):2268-2270 [PMID: 32294339]
  39. Lancet Respir Med. 2020 Jul;8(7):681-686 [PMID: 32473124]
  40. J Exp Med. 2021 Apr 5;218(4): [PMID: 33464307]
  41. J Virol. 2007 Jan;81(2):813-21 [PMID: 17079315]
  42. Blood. 2020 Sep 10;136(11):1317-1329 [PMID: 32573711]
  43. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  44. Lancet Neurol. 2020 Nov;19(11):919-929 [PMID: 33031735]
  45. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  46. Lancet. 2021 Jan 23;397(10271):276 [PMID: 33485445]
  47. Front Pharmacol. 2019 Apr 26;10:445 [PMID: 31133849]
  48. Eur Respir J. 2007 Oct;30(4):805 [PMID: 17906089]
  49. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  50. Viral Immunol. 2011 Apr;24(2):131-42 [PMID: 21449723]
  51. Nature. 2021 Jan;589(7843):603-607 [PMID: 33166988]
  52. Cell. 2021 Nov 24;184(24):5932-5949.e15 [PMID: 34798069]
  53. Elife. 2021 Mar 08;10: [PMID: 33683204]
  54. Sci Adv. 2020 Jul 31;6(31): [PMID: 32937591]
  55. Brain Behav Immun. 2020 Oct;89:579-586 [PMID: 32629042]
  56. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  57. Lancet Infect Dis. 2020 Sep;20(9):1015-1016 [PMID: 32304629]
  58. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  59. Cell. 2021 Jan 7;184(1):149-168.e17 [PMID: 33278357]
  60. Sci Transl Med. 2021 Jun 2;13(596): [PMID: 33941622]
  61. Exp Toxicol Pathol. 2006 Jun;57 Suppl 2:13-20 [PMID: 16638630]
  62. Exp Neurol. 2005 Oct;195(2):379-90 [PMID: 16004984]
  63. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  64. Nat Immunol. 2020 Nov;21(11):1327-1335 [PMID: 32839612]

MeSH Term

Administration, Inhalation
Angiotensin-Converting Enzyme 2
Animals
COVID-19
Disease Models, Animal
Encephalitis, Viral
Epithelial Cells
Female
Humans
Keratin-18
Lung
Male
Mice
Mice, Transgenic
Nasal Sprays
Promoter Regions, Genetic
SARS-CoV-2
Transcriptome
Virus Replication

Chemicals

Keratin-18
Nasal Sprays
ACE2 protein, human
Angiotensin-Converting Enzyme 2