Antonio Martínez-Serrano, Elena Marín-Cascales, Konstantinos Spyrou, Tomás T Freitas, Pedro E Alcaraz
This study's aim was to analyze muscle activation and kinematics of sled-pushing and resisted-parachute sprinting with three load conditions on an instrumentalized SKILLRUN treadmill. Nine male amateur rugby union players (21.3 ± 4.3 years, 75.8 ± 10.2 kg, 176.6 ± 8.8 cm) performed a sled-push session consisting of three 15-m repetitions at 20%, 55% and 90% body mas and another resisted-parachute session using three different parachute sizes (XS, XL and 3XL). Sprinting kinematics and muscle activity of three lower-limb muscles (biceps femoris (BF), vastus lateralis (VL) and gastrocnemius medialis (GM)) were measured. A repeated-measures analysis of variance (RM-ANOVA) showed that higher loads during the sled-push increased (VL) ( ≤ 0.001) and (GM) ( ≤ 0.001) but not (BF) ( = 0.278) activity. Furthermore, it caused significant changes in sprinting kinematics, stiffness and joint angles. Resisted-parachute sprinting did not change kinematics or muscle activation, despite producing a significant overload (i.e., speed loss). In conclusion, increased sled-push loading caused disruptions in sprinting technique and altered lower-limb muscle activation patterns as opposed to the resisted-parachute. These findings might help practitioners determine the more adequate resisted sprint exercise and load according to the training objective (e.g., power production or speed performance).
J Appl Biomech. 2005 May;21(2):167-80
[PMID:
16082017]
J Appl Physiol (1985). 1987 Jun;62(6):2326-37
[PMID:
3610929]
J Strength Cond Res. 2007 Feb;21(1):77-85
[PMID:
17313259]
Int J Exerc Sci. 2017 Nov 01;10(7):1067-1075
[PMID:
29170707]
J Strength Cond Res. 2003 Nov;17(4):760-7
[PMID:
14636109]
J Strength Cond Res. 2020 Jul 09;:
[PMID:
32658032]
J Sci Med Sport. 2012 Jan;15(1):80-6
[PMID:
21820959]
Sports Med. 2018 Sep;48(9):2143-2165
[PMID:
29926369]
J Strength Cond Res. 2011 Jun;25(6):1680-5
[PMID:
21358426]
Scand J Med Sci Sports. 2020 Mar;30(3):442-449
[PMID:
31742795]
J Strength Cond Res. 2014 Jul;28(7):1790-801
[PMID:
24149762]
J Strength Cond Res. 2006 Feb;20(1):208-14
[PMID:
16506864]
Eur J Appl Physiol. 2002 Jul;87(3):264-71
[PMID:
12111288]
J Strength Cond Res. 2020 May 20;:
[PMID:
32614156]
Front Physiol. 2017 Dec 12;8:1034
[PMID:
29311968]
J Biomech. 2013 Feb 22;46(4):780-7
[PMID:
23246045]
J Electromyogr Kinesiol. 2000 Oct;10(5):361-74
[PMID:
11018445]
Med Sci Sports Exerc. 2009 Jan;41(1):3-13
[PMID:
19092709]
J Strength Cond Res. 2018 Oct;32(10):2762-2769
[PMID:
28723812]
Sports Med. 1997 Sep;24(3):147-56
[PMID:
9327528]
J Strength Cond Res. 2014 Dec;28(12):3346-53
[PMID:
25226330]
Sports (Basel). 2020 May 18;8(5):
[PMID:
32443515]
Sports (Basel). 2020 May 25;8(5):
[PMID:
32466235]
J Biomech. 2012 Jul 26;45(11):1987-91
[PMID:
22682258]
Sports Med. 2021 Jun;51(6):1179-1207
[PMID:
33245512]
Pediatr Exerc Sci. 2018 Feb 1;30(1):115-123
[PMID:
28787247]
PLoS One. 2018 Jul 26;13(7):e0201475
[PMID:
30048538]
Sports Biomech. 2020 Apr;19(2):141-156
[PMID:
29972337]
J Sci Med Sport. 2017 Aug;20(8):781-785
[PMID:
28185808]
Biol Open. 2014 Jul 04;3(8):689-99
[PMID:
24996923]
J Electromyogr Kinesiol. 2020 Aug;53:102438
[PMID:
32569878]
Scand J Med Sci Sports. 2017 Oct;27(10):1050-1060
[PMID:
27373796]
J Appl Physiol (1985). 1993 Jan;74(1):359-68
[PMID:
8444715]
J Strength Cond Res. 2020 Jan 16;:
[PMID:
31972825]
Int J Sports Physiol Perform. 2017 Sep;12(8):1052-1058
[PMID:
27967284]
Sports Med. 2015 Aug;45(8):1191-205
[PMID:
26063470]
Int J Sports Physiol Perform. 2017 Sep;12(8):1069-1077
[PMID:
28051333]
J Strength Cond Res. 2021 Apr 1;35(4):1030-1038
[PMID:
30299389]
J Strength Cond Res. 2008 May;22(3):890-7
[PMID:
18438225]
J Sports Sci. 2005 Sep;23(9):927-35
[PMID:
16195044]