Microwave Assisted Cu-Mediated Trifluoromethylation of Pyrimidine Nucleosides.

Priyanka Mangla, Yogesh S Sanghvi, Ashok K Prasad
Author Information
  1. Priyanka Mangla: Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
  2. Yogesh S Sanghvi: Rasayan Inc., Encinitas, California.
  3. Ashok K Prasad: Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India.

Abstract

Trifluoromethylated nucleosides, such as trifluridine, have widespread applications in pharmaceuticals as anticancer and antiviral agents. However, site-selective addition of a trifluoromethyl group onto a nucleobase typically requires either inconvenient multi-step synthesis or expensive trifluoromethylation reagents, or results in low yield. This article describes a simple, scalable, and high-yielding protocol for late-stage direct trifluoromethylation of pyrimidine nucleosides via a microwave-irradiated pathway. First, 5-iodo pyrimidine nucleosides undergo complete benzoylation to obtain N -benzoyl-3',5'-di-O-benzoyl-5-iodo-pyrimidine nucleosides as key precursors. Next, trifluoromethylation is carried out under both conventional and microwave heating using an inexpensive and commercially accessible Chen's reagent, i.e., methyl fluorosulfonyldifluoroacetate, to produce N -benzoyl-3',5'-di-Obenzoyl-5-trifluoromethyl-pyrimidine nucleosides. The microwave-assisted transformation accentuates its simplicity, mild reaction conditions, and dominance, providing a facile route to access trifluoromethylation. Finally, the envisioned 5-trifluoromethyl pyrimidine nucleosides are obtained by a routine debenzoylation procedure. This concludes a convenient three-step synthesis to obtain trifluridine and its 2'-modified analogs on a gram scale with consistently high yields, starting from their respective iodo-precursors, and requires only one chromatographic purification at the trifluoromethylation step. Furthermore, this operationally simple protocol can be utilized as a definitive methodology to produce various other trifluoromethylated therapeutics. © 2021 Wiley Periodicals LLC. Basic Protocol: Synthesis of 5-trifluoromethyl pyrimidine nucleosides 4a-c Alternate Protocol: Conventional trifluoromethylation: Synthesis of N3-benzoyl-3',5'-di-O-benzoyl-5-trifluoromethyl pyrimidine nucleosides (3a-c).

Keywords

References

Alonso, C., de Marigorta, E. M., Rubiales, G., & Palacios, F. (2015). Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chemical Reviews, 115, 1847-1935. doi: 10.1021/cr500368h.
Carmine, A. A., Brogden, R. N., Heel, R. C., Speight, T. M., & Avery, G. S. (1982). Trifluridine: A review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs, 23, 329-353. doi: 10.2165/00003495-19822305000001.
Castleberry, C. M., Rodicio, L. P., & Limbach, P. A. (2008). Electrospray ionization mass spectrometry of oligonucleotides. Current Protocols in Nucleic Acid Chemistry, 35, 10.2.1-10.2.19. doi: 10.1002/0471142700.nc1002s35.
Guerrero, I., & Correa, A. (2020). Site-selective trifluoromethylation reactions of oligopeptides. Asian Journal of Organic Chemistry, 9, 898909. doi: 10.1002/ajoc.202000170.
Heidelberger, C., Parsons, D. G., & Remy, D. C. (1964). Synthesis of 5-trifluoromethyuracil and 5-trifluoromethyl-2'deoxyuridine. Journal of Medicinal Chemistry, 7, 1-5. doi: 10.1021/jm00331a001.
James, T. L. (2001). NMR determination of oligonucleotide structure. Current Protocols in Nucleic Acid Chemistry, 7.2, 7.2.1-7.2.16. doi: 10.1002/0471142700.nc0702s00.
Ji, Y., Brueckl, T., Baxter, D. R., Fujiwara, Y., Seiple, I. B., Su, S., … Baran, P. S. (2011). Innate C-H trifluoromethylation of heterocycles. Current Protocols in Nucleic Acid Chemistry, 108, 14411-14415. doi: 10.1073/pnas.1109059108.
Kananovich, D. G. 2020. Copper-catalysed trifluoromethylation reactions. In Copper catalysis in organic synthesis (1st ed., pp. 367-393). Wiley-VCH Verlag GmbH & Co. doi: 10.1002/9783527826445.ch17.
Kang, C., Dhillon, S., & Deeks, E. D. (2019). Trifluridine/Tipiracil: A review in metastatic gastric cancer. Drugs, 79, 1583-1590. doi: 10.1007/s40265-019-01195-w.
Kobayashi, Y., Yamamoto, K., Asai, T., Nakano, M., & Kumadaki, I. (1980). Studies on organic fluorine compounds. Part 35. Trifluoromethylation of pyrimidine- and purine-nucleosides with trifluoromethyl-copper complex. Journal of the Chemical Society, Perkin Transactions, 1, 2755-2761. doi: 10.1039/P19800002755.
Li, G.-B., Zhang, C., Song, C., & Ma, Y.-D. (2018). Progress in copper-catalysed trifluoromethylation. Beilstein Journal of Organic Chemistry, 14, 155-181. doi: 10.3762/bjoc.14.11.
McLoughlin, V. C. R., & Thrower, J. (1969). A Route to fluoroalkyl-substituted aromatic compounds involving fluoroalkyl copper intermediates. Tetrahedron, 25, 5921-5940. doi: 10.1016/S0040-4020(01)83100-8.
Meyers, C. (2001). Column chromatography. Current Protocols in Nucleic Acid Chemistry, 3, A.3E.1-A.3E.7. doi: 10.1002/0471142700.nca03es03.
Meyers, C. L. F., & Meyers, D. J. (2008). Thin-layer chromatography. Current Protocols in Nucleic Acid Chemistry, 34, A3D.1-A3D.13. doi: 10.1002/0471142700.nca03ds34.
Ryan, K. J., Acton, E. M., & Goodman, L. (1966). Chemical synthesis of 2'-deoxy-5-(trifluoromethyl)uridine and the α-anomer. The Journal of Organic Chemistry, 31, 1181-1184. doi: 10.1021/jo01342a046.
Ross, B. S., Springer, R. S., Vasquez, G., Andrews, R. S., Cook, P. D., & Acevedo, O. L. (1994). General preparative synthesis of 2′-O-methylpyrimidine ribonucleosides. Journal of Heterocyclic Chemistry, 31, 765. doi: 10.1002/jhet.5570310412.
Shah, P., & Westwell, A. D. (2007). The role of fluorine in medicinal chemistry. Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 527-540. doi: 10.1080/14756360701425014.
Wang, J., Sanchez-Rosello, M., Acena, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., … Liu, H. (2014). Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade. Chemical Reviews, 114, 2432-2506. doi: 10.1021/cr4002879.
Xie, Q., & Hu, J. (2020). Chen's Reagent: A versatile reagent for trifluoromethylation, difluoromethylenation, and difluoroalkylation in organic synthesis. Chinese Journal of Chemistry, 38, 202-212. doi: 10.1002/cjoc.201900424.
Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Acena, J. L., … Liu, H. (2016). Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chemical Reviews, 116, 422-518. doi: 10.1021/acs.chemrev.5b00392.
Zhu, W., Wang, J., Wang, S., Gu, Z., Acena, J. L., Izawa, K., … Soloshonok, V. A. (2014). Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. Journal of Fluorine Chemistry, 167, 37-54. doi: 10.1016/j.jfluchem.2014.06.026.

MeSH Term

Antiviral Agents
Microwaves
Nucleosides
Pyrimidine Nucleosides

Chemicals

Antiviral Agents
Nucleosides
Pyrimidine Nucleosides

Word Cloud

Similar Articles

Cited By