Transcriptomic Profiles Reveal Downregulation of Low-Density Lipoprotein Particle Receptor Pathway Activity in Patients Surviving Severe COVID-19.

Ivan Vlasov, Alexandra Panteleeva, Tatiana Usenko, Mikhael Nikolaev, Artem Izumchenko, Elena Gavrilova, Irina Shlyk, Valentina Miroshnikova, Maria Shadrina, Yurii Polushin, Sofya Pchelina, Petr Slonimsky
Author Information
  1. Ivan Vlasov: Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 123182 Moscow, Russia. ORCID
  2. Alexandra Panteleeva: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  3. Tatiana Usenko: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  4. Mikhael Nikolaev: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia. ORCID
  5. Artem Izumchenko: Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center "Kurchatov Institute", 188300 Saint-Petersburg, Russia. ORCID
  6. Elena Gavrilova: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  7. Irina Shlyk: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  8. Valentina Miroshnikova: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  9. Maria Shadrina: Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 123182 Moscow, Russia.
  10. Yurii Polushin: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  11. Sofya Pchelina: Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia.
  12. Petr Slonimsky: Institute of Molecular Genetics of National Research Center "Kurchatov Institute", 123182 Moscow, Russia.

Abstract

To assess the biology of the lethal endpoint in patients with SARS-CoV-2 infection, we compared the transcriptional response to the virus in patients who survived or died during severe COVID-19. We applied gene expression profiling to generate transcriptional signatures for peripheral blood mononuclear cells (PBMCs) from patients with SARS-CoV-2 infection at the time when they were placed in the Intensive Care Unit of the Pavlov First State Medical University of St. Petersburg (Russia). Three different bioinformatics approaches to RNA-seq analysis identified a downregulation of three common pathways in survivors compared with nonsurvivors among patients with severe COVID-19, namely, low-density lipoprotein (LDL) particle receptor activity (GO:0005041), important for maintaining cholesterol homeostasis, leukocyte differentiation (GO:0002521), and cargo receptor activity (GO:0038024). Specifically, PBMCs from surviving patients were characterized by reduced expression of PPARG, CD36, STAB1, ITGAV, and ANXA2. Taken together, our findings suggest that LDL particle receptor pathway activity in patients with COVID-19 infection is associated with poor disease prognosis.

Keywords

References

  1. Bioinformatics. 2012 Aug 15;28(16):2184-5 [PMID: 22743226]
  2. PLoS Pathog. 2021 Feb 1;17(2):e1009243 [PMID: 33524041]
  3. Cell Rep Med. 2020 Dec 26;2(1):100166 [PMID: 33521697]
  4. J Biol Chem. 2019 May 3;294(18):7335-7347 [PMID: 30804209]
  5. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  6. J Korean Med Sci. 2020 Jun 29;35(25):e234 [PMID: 32597046]
  7. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  8. Physiol Genomics. 2021 Feb 1;53(2):51-60 [PMID: 33275540]
  9. Front Biosci (Elite Ed). 2021 Jan 1;13(1):117-139 [PMID: 33048778]
  10. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  11. Cell. 2020 Jun 11;181(6):1194-1199 [PMID: 32405102]
  12. Bioinformatics. 2009 Apr 15;25(8):1091-3 [PMID: 19237447]
  13. Hum Genet. 2020 Jun;139(6-7):911-918 [PMID: 32040615]
  14. BMC Res Notes. 2016 Feb 12;9:88 [PMID: 26868221]
  15. Microb Pathog. 2021 Jan;150:104673 [PMID: 33278517]
  16. Antioxidants (Basel). 2021 Aug 25;10(9): [PMID: 34572973]
  17. J Clin Lipidol. 2020 May - Jun;14(3):297-304 [PMID: 32430154]
  18. Cell. 2021 Jan 7;184(1):106-119.e14 [PMID: 33333024]
  19. Curr Protoc Immunol. 2001 May;Chapter 7:7.1.1-7.1.7 [PMID: 18432823]
  20. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3089-94 [PMID: 23382216]
  21. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  22. Nature. 2003 Nov 27;426(6965):450-4 [PMID: 14647384]
  23. Mediators Inflamm. 2021 Apr 1;2021:6635925 [PMID: 33833618]
  24. Arterioscler Thromb Vasc Biol. 2009 Apr;29(4):431-8 [PMID: 19299327]
  25. Emerg Microbes Infect. 2020 Dec;9(1):761-770 [PMID: 32228226]
  26. Bioinformatics. 2013 Mar 1;29(5):661-3 [PMID: 23325622]
  27. Biochimie. 2021 Oct;189:51-64 [PMID: 34153377]
  28. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  29. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):713-714 [PMID: 32470851]
  30. J Immunol. 2009 Nov 15;183(10):6452-9 [PMID: 19864601]
  31. Biochimie. 2017 May;136:21-26 [PMID: 28013071]
  32. BMC Public Health. 2019 Sep 5;19(1):1231 [PMID: 31488143]
  33. Elife. 2021 Apr 23;10: [PMID: 33890572]
  34. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  35. J Epidemiol Glob Health. 2021 Mar;11(1):98-104 [PMID: 33095982]
  36. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  37. J Exp Med. 2009 Mar 16;206(3):637-53 [PMID: 19237602]
  38. Trends Anaesth Crit Care. 2021 Feb;36:39-40 [PMID: 38620647]
  39. Hellenic J Cardiol. 2021 Jan-Feb;62(1):13-23 [PMID: 32522617]
  40. J Biol Chem. 2014 Jun 20;289(25):17732-46 [PMID: 24808179]
  41. FASEB J. 2020 Aug;34(8):9843-9853 [PMID: 32588493]
  42. Front Endocrinol (Lausanne). 2021 Feb 26;12:624112 [PMID: 33716977]
  43. J Lipid Res. 2019 Apr;60(4):844-855 [PMID: 30662007]
  44. ScientificWorldJournal. 2010 Oct 12;10:2039-53 [PMID: 20953554]
  45. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  46. Front Immunol. 2020 Jun 26;11:1636 [PMID: 32670298]
  47. J Neuroimmune Pharmacol. 2019 Sep;14(3):503-518 [PMID: 31119595]
  48. Atherosclerosis. 2017 Jun;261:60-68 [PMID: 28456096]
  49. Signal Transduct Target Ther. 2020 Sep 3;5(1):186 [PMID: 32883951]
  50. Int J Mol Sci. 2021 Jun 25;22(13): [PMID: 34202091]
  51. Nat Med. 2005 Aug;11(8):875-9 [PMID: 16007097]
  52. Trends Parasitol. 2014 Sep;30(9):436-44 [PMID: 25113859]
  53. Mol Cell Biochem. 2021 Feb;476(2):553-574 [PMID: 33029696]
  54. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  55. Front Microbiol. 2018 Dec 05;9:2954 [PMID: 30568638]
  56. Sci Rep. 2021 Aug 3;11(1):15701 [PMID: 34344929]
  57. PLoS Pathog. 2014 Feb 06;10(2):e1003911 [PMID: 24516383]
  58. Int J Cancer. 2015 Feb 15;136(4):810-20 [PMID: 24976296]
  59. Acta Trop. 2021 Feb;214:105778 [PMID: 33253656]
  60. Cell Mol Life Sci. 2021 Jan;78(2):531-544 [PMID: 32780149]
  61. Immunobiology. 2009;214(7):576-93 [PMID: 19457577]
  62. Clin Chim Acta. 2020 Nov;510:105-110 [PMID: 32653486]
  63. J Clin Invest. 2001 Sep;108(6):785-91 [PMID: 11560944]
  64. Metabolism. 2020 Jun;107:154243 [PMID: 32320740]
  65. Int J Clin Pract. 2021 Apr;75(4):e13868 [PMID: 33244856]
  66. J Lipid Res. 2018 Jul;59(7):1084-1093 [PMID: 29627764]

Grants

  1. agreements No. 075-15-2019-1663 and 075-15-2019-1664/Genome Research Centre development program ��Kurchatov Genome Centre��

MeSH Term

Aged
COVID-19
Down-Regulation
Gene Expression Profiling
Gene Ontology
Gene Regulatory Networks
Humans
Leukocytes, Mononuclear
Male
Middle Aged
RNA-Seq
Receptors, LDL
SARS-CoV-2

Chemicals

Receptors, LDL