Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection.

Feargal J Ryan, Christopher M Hope, Makutiro G Masavuli, Miriam A Lynn, Zelalem A Mekonnen, Arthur Eng Lip Yeow, Pablo Garcia-Valtanen, Zahraa Al-Delfi, Jason Gummow, Catherine Ferguson, Stephanie O'Connor, Benjamin A J Reddi, Pravin Hissaria, David Shaw, Chuan Kok-Lim, Jonathan M Gleadle, Michael R Beard, Simon C Barry, Branka Grubor-Bauk, David J Lynn
Author Information
  1. Feargal J Ryan: Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.
  2. Christopher M Hope: Women's and Children's Health Network, North Adelaide, SA, Australia.
  3. Makutiro G Masavuli: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
  4. Miriam A Lynn: Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.
  5. Zelalem A Mekonnen: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
  6. Arthur Eng Lip Yeow: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
  7. Pablo Garcia-Valtanen: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
  8. Zahraa Al-Delfi: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia.
  9. Jason Gummow: Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
  10. Catherine Ferguson: Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
  11. Stephanie O'Connor: Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
  12. Benjamin A J Reddi: Intensive Care Unit, Royal Adelaide Hospital, Central Adelaide Local Health Network and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
  13. Pravin Hissaria: Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
  14. David Shaw: Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
  15. Chuan Kok-Lim: Infectious Diseases Department, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
  16. Jonathan M Gleadle: Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.
  17. Michael R Beard: Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
  18. Simon C Barry: Women's and Children's Health Network, North Adelaide, SA, Australia. simon.barry@adelaide.edu.au.
  19. Branka Grubor-Bauk: Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia. branka.grubor@adelaide.edu.au.
  20. David J Lynn: Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. david.lynn@sahmri.com.

Abstract

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as "long COVID", post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects.
METHODS: We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection.
RESULTS: Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not.
CONCLUSIONS: Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.

Keywords

References

  1. Cell Rep Med. 2021 Apr 20;2(4):100253 [PMID: 33842901]
  2. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  3. Nucleic Acids Res. 2014 Dec 1;42(21): [PMID: 25294822]
  4. mBio. 2021 Apr 27;12(2): [PMID: 33906918]
  5. J Exp Med. 2021 Aug 2;218(8): [PMID: 34128959]
  6. Science. 2021 Feb 5;371(6529): [PMID: 33408181]
  7. Sci Rep. 2021 Mar 10;11(1):5558 [PMID: 33692386]
  8. Nature. 2020 Aug;584(7821):437-442 [PMID: 32555388]
  9. Nat Med. 2020 Sep;26(9):1428-1434 [PMID: 32661393]
  10. Eur J Immunol. 2019 Aug;49(8):1235-1250 [PMID: 31127857]
  11. Euro Surveill. 2020 Jan;25(3): [PMID: 31992387]
  12. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  13. Genome Med. 2021 Jan 13;13(1):7 [PMID: 33441124]
  14. Nat Med. 2020 Jul;26(7):1033-1036 [PMID: 32398876]
  15. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  16. Proc Natl Acad Sci U S A. 2021 Sep 14;118(37): [PMID: 34433692]
  17. Nature. 2021 Jan;589(7842):342-343 [PMID: 33452511]
  18. Sci Transl Med. 2021 Apr 21;13(590): [PMID: 33723016]
  19. J Infect. 2021 Mar;82(3):378-383 [PMID: 33450302]
  20. Thorax. 2021 Apr;76(4):396-398 [PMID: 33172844]
  21. Cell. 2021 Nov 11;184(23):5838 [PMID: 34767776]
  22. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  23. Science. 2008 May 30;320(5880):1220-4 [PMID: 18436744]
  24. Sci Immunol. 2021 Nov 12;6(65):eabk1741 [PMID: 34591653]
  25. Immunol Rev. 2013 Mar;252(1):104-15 [PMID: 23405898]
  26. Elife. 2021 Mar 23;10: [PMID: 33752798]
  27. Lancet. 2021 Jan 16;397(10270):220-232 [PMID: 33428867]
  28. Clin Infect Dis. 2016 Nov 1;63(9):1198-1201 [PMID: 27418575]
  29. Cell. 2020 Oct 1;183(1):143-157.e13 [PMID: 32877699]
  30. Nature. 2021 Jun;594(7862):259-264 [PMID: 33887749]
  31. Thorax. 2021 Apr;76(4):405-407 [PMID: 33273028]
  32. Nat Commun. 2017 Nov 13;8(1):1473 [PMID: 29133794]
  33. Sci Rep. 2015 Dec 04;5:17794 [PMID: 26634309]
  34. Science. 2020 Sep 18;369(6510):1501-1505 [PMID: 32703906]
  35. Cancer Res. 2013 Feb 1;73(3):1180-9 [PMID: 23243023]
  36. Cell Rep. 2021 Jun 29;35(13):109320 [PMID: 34146478]
  37. Hematology. 2005 Apr;10(2):101-5 [PMID: 16019455]
  38. Cold Spring Harb Perspect Biol. 2019 Mar 1;11(3): [PMID: 29891561]
  39. Platelets. 2014;25(4):308 [PMID: 23909680]
  40. JAMA. 2020 Aug 11;324(6):603-605 [PMID: 32644129]
  41. Biochim Biophys Acta. 2009 Dec;1792(12):1113-21 [PMID: 19389473]
  42. Cell Rep Med. 2021 Mar 16;2(3):100208 [PMID: 33564749]
  43. Lancet Haematol. 2020 Aug;7(8):e624 [PMID: 32464105]
  44. J Infect. 2021 Apr;82(4):e31-e33 [PMID: 33373650]
  45. Immunity. 2021 Jun 8;54(6):1257-1275.e8 [PMID: 34051148]
  46. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  47. J Clin Pathol. 2021 Nov;74(11):750-751 [PMID: 33067181]
  48. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  49. JAMA Netw Open. 2021 Jan 4;4(1):e2036142 [PMID: 33502487]
  50. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  51. Respirology. 2010 Apr;15(3):543-50 [PMID: 20337995]
  52. Nat Immunol. 2014 Feb;15(2):195-204 [PMID: 24336226]
  53. Lancet Infect Dis. 2020 Oct;20(10):1115-1117 [PMID: 32888409]
  54. J Infect Dis. 2007 Jul 1;196(1):56-66 [PMID: 17538884]
  55. Blood. 2020 Sep 10;136(11):1317-1329 [PMID: 32573711]
  56. Nat Struct Mol Biol. 2020 Oct;27(10):959-966 [PMID: 32908316]
  57. Signal Transduct Target Ther. 2020 Dec 24;5(1):294 [PMID: 33361761]
  58. Cell Rep. 2021 Mar 2;34(9):108790 [PMID: 33596407]
  59. J Immunol. 2020 Jun 1;204(11):2949-2960 [PMID: 32321759]
  60. PLoS Pathog. 2011 Dec;7(12):e1002433 [PMID: 22174690]
  61. Sci Rep. 2020 Dec 8;10(1):21400 [PMID: 33293556]
  62. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  63. Cell Host Microbe. 2012 Oct 18;12(4):470-83 [PMID: 23084916]
  64. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  65. Cell Rep Med. 2021 Jul 20;2(7):100329 [PMID: 34151306]
  66. J Clin Invest. 2021 Jan 4;131(1): [PMID: 33119547]
  67. Elife. 2019 Dec 16;8: [PMID: 31841110]
  68. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  69. SN Compr Clin Med. 2020 Sep 19;:1-11 [PMID: 32984764]
  70. Lancet Infect Dis. 2015 Aug;15(8):905-12 [PMID: 25910637]
  71. Br J Haematol. 2020 Jul;190(2):e61-e64 [PMID: 32420612]
  72. Cell Discov. 2020 May 4;6:31 [PMID: 32377375]
  73. Immunity. 2021 Feb 9;54(2):340-354.e6 [PMID: 33567252]
  74. Sci Immunol. 2020 May 1;5(47): [PMID: 32358172]
  75. Thorax. 2021 Apr;76(4):399-401 [PMID: 33273026]
  76. Cell Rep. 2021 Aug 10;36(6):109518 [PMID: 34358460]
  77. Cell. 2020 Nov 12;183(4):1024-1042.e21 [PMID: 32991844]
  78. Nat Cell Biol. 2021 May;23(5):538-551 [PMID: 33972731]
  79. Cell Rep Med. 2021 Feb 16;2(2):100204 [PMID: 33521695]
  80. Nat Commun. 2021 Mar 22;12(1):1813 [PMID: 33753738]
  81. Nat Commun. 2021 Feb 19;12(1):1162 [PMID: 33608522]
  82. Med (N Y). 2021 Mar 12;2(3):313-320.e4 [PMID: 33554155]
  83. Allergy. 2021 Mar;76(3):751-765 [PMID: 33128792]
  84. Blood. 2012 May 10;119(19):4430-40 [PMID: 22438251]
  85. Nat Med. 2021 Apr;27(4):601-615 [PMID: 33753937]
  86. Sci Immunol. 2018 Jan 19;3(19): [PMID: 29352091]
  87. Nat Med. 2011 Jul 24;17(8):975-82 [PMID: 21785433]
  88. J Clin Invest. 2009 Dec;119(12):3573-85 [PMID: 19920355]
  89. mBio. 2021 Oct 26;12(5):e0247321 [PMID: 34607456]
  90. Curr Med Chem. 2006;13(30):3719-31 [PMID: 17168733]
  91. Circ Res. 2021 Sep 3;129(6):631-646 [PMID: 34293929]
  92. Cell Syst. 2021 Jan 20;12(1):23-40.e7 [PMID: 33096026]
  93. Cell Mol Immunol. 2020 May;17(5):433-450 [PMID: 32238918]

MeSH Term

Antibodies, Viral
COVID-19
Humans
Immune System
SARS-CoV-2
Post-Acute COVID-19 Syndrome

Chemicals

Antibodies, Viral