Andreas Kolbeck, Peter Marhavý, Damien De Bellis, Baohai Li, Takehiro Kamiya, Toru Fujiwara, Lothar Kalmbach, Niko Geldner
Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in leads to fully functional CSDs at ectopic positions, forming 'half strips'. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning.
Cell. 2013 Apr 11;153(2):402-12
[PMID:
23541512]
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12099-104
[PMID:
26371322]
PLoS One. 2013 Dec 20;8(12):e83043
[PMID:
24376629]
Science. 2017 Jan 20;355(6322):280-284
[PMID:
28104888]
Plant J. 2018 Jan;93(2):399-412
[PMID:
29171896]
Mol Cell Proteomics. 2017 Jun;16(6):1162-1171
[PMID:
28404794]
Genome Res. 2004 Jun;14(6):1188-90
[PMID:
15173120]
J Struct Biol. 1996 Jan-Feb;116(1):71-6
[PMID:
8742726]
Curr Biol. 2017 Mar 6;27(5):758-765
[PMID:
28238658]
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10533-8
[PMID:
26124109]
Science. 2017 Jan 20;355(6322):284-286
[PMID:
28104889]
J Cell Biol. 1996 Feb;132(3):451-63
[PMID:
8636221]
Dev Cell. 2019 Mar 25;48(6):840-852.e5
[PMID:
30913408]
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5214-9
[PMID:
20142472]
Curr Opin Biotechnol. 2019 Apr;56:121-129
[PMID:
30502636]
J Mammary Gland Biol Neoplasia. 2003 Oct;8(4):449-62
[PMID:
14985640]
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14498-503
[PMID:
23940370]
Microsc Res Tech. 1992 Nov 1;23(3):201-6
[PMID:
1282045]
Nature. 2007 Jul 12;448(7150):209-12
[PMID:
17625566]
Nat Plants. 2016 Jul 25;2:16113
[PMID:
27455051]
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5220-5
[PMID:
20194745]
EMBO J. 2020 May 4;39(9):e103894
[PMID:
32187732]
Nat Plants. 2017 Apr 24;3:17058
[PMID:
28436943]
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
[PMID:
30931475]
Genes Dev. 2016 Feb 15;30(4):471-83
[PMID:
26883363]
Annu Rev Plant Biol. 2013;64:531-58
[PMID:
23451777]
Plant Physiol. 2019 Apr;179(4):1444-1456
[PMID:
30718350]
PLoS One. 2007 Aug 08;2(8):e718
[PMID:
17684564]
Nat Methods. 2017 Jan;14(1):53-56
[PMID:
27869816]
Elife. 2014 Sep 16;3:e03115
[PMID:
25233277]
Bio Protoc. 2015 Apr 20;5(8):
[PMID:
27331080]
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641
[PMID:
30976793]
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):10101-6
[PMID:
22665765]
Sci Rep. 2016 Aug 02;6:30980
[PMID:
27481162]
Nature. 2011 May 19;473(7347):380-3
[PMID:
21593871]
Front Plant Sci. 2019 Jun 04;10:713
[PMID:
31231406]