Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities.

Yosuke Tanaka, Fumiko Chiwaki, Shinya Kojima, Masahito Kawazu, Masayuki Komatsu, Toshihide Ueno, Satoshi Inoue, Shigeki Sekine, Keisuke Matsusaki, Hiromichi Matsushita, Narikazu Boku, Yae Kanai, Yasushi Yatabe, Hiroki Sasaki, Hiroyuki Mano
Author Information
  1. Yosuke Tanaka: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan. yotanaka@ncc.go.jp. ORCID
  2. Fumiko Chiwaki: Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan. ORCID
  3. Shinya Kojima: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
  4. Masahito Kawazu: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
  5. Masayuki Komatsu: Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan.
  6. Toshihide Ueno: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan. ORCID
  7. Satoshi Inoue: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
  8. Shigeki Sekine: Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.
  9. Keisuke Matsusaki: Kanamecho Hospital, Tokyo, Japan.
  10. Hiromichi Matsushita: Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan.
  11. Narikazu Boku: Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan. ORCID
  12. Yae Kanai: Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
  13. Yasushi Yatabe: Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.
  14. Hiroki Sasaki: Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan. hksasaki@ncc.go.jp. ORCID
  15. Hiroyuki Mano: Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan. hmano@ncc.go.jp. ORCID

Abstract

Peritoneal metastasis, a hallmark of incurable advanced gastric cancer (GC), presently has no curative therapy and its molecular features have not been examined extensively. Here we present a comprehensive multi-omic analysis of malignant ascitic fluid samples and their corresponding tumor cell lines from 98 patients, including whole-genome sequencing, RNA sequencing, DNA methylation and enhancer landscape. We identify a higher frequency of receptor tyrosine kinase and mitogen-activated protein kinase pathway alterations compared to primary GC; moreover, approximately half of the gene alterations are potentially treatable with targeted therapy. Our analyses also stratify ascites-disseminated GC into two distinct molecular subtypes: one displaying active super enhancers (SEs) at the ELF3, KLF5 and EHF loci, and a second subtype bearing transforming growth factor-β (TGF-β) pathway activation through SMAD3 SE activation and high expression of transcriptional enhancer factor TEF-1 (TEAD1). In the TGF-β subtype, inhibition of the TEAD pathway circumvents therapy resistance, suggesting a potential molecular-guided therapeutic strategy for this subtype of intractable GC.

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018). [PMID: 30207593]
  2. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965). [PMID: 14320675]
  3. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015). [PMID: 25894828]
  4. Sadeghi, B. et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer 88, 358–363 (2000). [PMID: 10640968]
  5. Wei, J., Wu, N.-D. & Liu, B.-R. Regional but fatal: intraperitoneal metastasis in gastric cancer. World J. Gastroenterol. 22, 7478–7485 (2016). [PMID: 27672270]
  6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014). [DOI: 10.1038/nature13480]
  7. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020). [PMID: 32469182]
  8. Kang, Y.-K. et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 2461–2471 (2017). [PMID: 28993052]
  9. Wang, R. et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69, 18–31 (2020). [PMID: 31171626]
  10. Liu, H. et al. Whole-exome sequencing to identify somatic mutations in peritoneal metastatic gastric adenocarcinoma: a preliminary study. Oncotarget 7, 43894–43906 (2016). [PMID: 27270314]
  11. Yashiro, M., Matsuoka, T. & Ohira, M. The significance of scirrhous gastric cancer cell lines: the molecular characterization using cell lines and mouse models. Hum. Cell 31, 271–281 (2018). [PMID: 29876827]
  12. Wang, R. et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat. Med. 27, 141–151 (2021). [PMID: 33398161]
  13. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). [PMID: 23770567]
  14. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 173, 1823 (2018). [PMID: 29906452]
  15. Dietlein, F. et al. Identification of cancer driver genes based on nucleotide context. Nat. Genet. 52, 208–218 (2020). [PMID: 32015527]
  16. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014). [PMID: 24816253]
  17. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). [PMID: 32025018]
  18. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020). [PMID: 32919526]
  19. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014). [PMID: 24816255]
  20. Zandvakili, I., Lin, Y., Morris, J. C. & Zheng, Y. Rho GTPases: anti- or pro-neoplastic targets? Oncogene 36, 3213–3222 (2017). [PMID: 27991930]
  21. Bielski, C. M. et al. Widespread selection for oncogenic mutant allele imbalance in cancer. Cancer Cell 34, 852–862.e4 (2018). [PMID: 30393068]
  22. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020). [PMID: 31853061]
  23. Schneeman, T. A. et al. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J. Immunol. 175, 376–384 (2005). [PMID: 15972671]
  24. Yue, X. et al. Polymeric immunoglobulin receptor promotes tumor growth in hepatocellular carcinoma. Hepatology 65, 1948–1962 (2017). [PMID: 28073159]
  25. Fu, Y. et al. FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol. 15, 480 (2014). [PMID: 25273974]
  26. Guo, Y. A., Chang, M. M. & Skanderup, A. J. MutSpot: detection of non-coding mutation hotspots in cancer genomes. NPJ Genom. Med. 5, 26 (2020). [PMID: 32550006]
  27. Guo, Y. A. et al. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers. Nat. Commun. 9, 1520 (2018). [PMID: 29670109]
  28. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018). [PMID: 30013179]
  29. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). [PMID: 31645765]
  30. Yang, H. et al. RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. Nat. Commun. 9, 4439 (2018). [PMID: 30361512]
  31. Chon, H. J. et al. The clinicopathologic features and prognostic impact of ALK positivity in patients with resected gastric cancer. Ann. Surg. Oncol. 22, 3938–3945 (2015). [PMID: 25707491]
  32. Sisdelli, L. et al. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr. Blood Cancer 66, e27707 (2019). [PMID: 30924609]
  33. Seoane, J. & Gomis, R. R. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb. Perspect. Biol. 9, a022277 (2017). [PMID: 28246180]
  34. Sakai, S. et al. Long noncoding RNA ELIT-1 acts as a Smad3 cofactor to facilitate TGFβ/Smad signaling and promote epithelial–mesenchymal transition. Cancer Res. 79, 2821–2838 (2019). [PMID: 30952633]
  35. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246–257 (2013). [PMID: 23467301]
  36. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019). [PMID: 31068700]
  37. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013). [PMID: 23582323]
  38. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013). [PMID: 23582322]
  39. Saint-André, V. et al. Models of human core transcriptional regulatory circuitries. Genome Res. 26, 385–396 (2016). [PMID: 26843070]
  40. Ooi, W. F. et al. Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent CCNE1 and IGF2 enhancer hijacking in primary gastric adenocarcinoma. Gut 69, 1039–1052 (2020). [PMID: 31542774]
  41. Zhang, X. et al. Somatic superenhancer duplications and hotspot mutations lead to oncogenic activation of the KLF5 transcription factor. Cancer Discov. 8, 108–125 (2018). [PMID: 28963353]
  42. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). [PMID: 22495300]
  43. Lee, J. et al. Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: the VIKTORY umbrella trial. Cancer Discov. 9, 1388–1405 (2019). [PMID: 31315834]
  44. Oh, S. C. et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat. Commun. 9, 1777 (2018). [PMID: 29725014]
  45. Kaneda, A. et al. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein–protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Am. J. Cancer Res. 10, 4399–4415 (2020). [PMID: 33415007]
  46. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020). [PMID: 31935369]
  47. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015). [PMID: 25665005]
  48. Cho, S. Y. et al. Sporadic early-onset diffuse gastric cancers have high frequency of somatic CDH1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. Gastroenterology 153, 536–549.e26 (2017). [PMID: 28522256]
  49. Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 3, 807–821 (2003). [PMID: 14557817]
  50. Chen, L. et al. Master transcription factors form interconnected circuitry and orchestrate transcriptional networks in oesophageal adenocarcinoma. Gut 69, 630–640 (2020). [PMID: 31409603]
  51. Ishigami, H. et al. Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC Trial. J. Clin. Oncol. 36, 1922–1929 (2018). [PMID: 29746229]
  52. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014). [PMID: 24525233]
  53. Ajani, J. A. et al. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut 70, 55–66 (2021). [PMID: 32345613]
  54. Matsusaki, K., Ohta, K., Yoshizawa, A. & Gyoda, Y. Novel cell-free and concentrated ascites reinfusion therapy (KM-CART) for refractory ascites associated with cancerous peritonitis: its effect and future perspectives. Int. J. Clin. Oncol. 16, 395–400 (2011). [PMID: 21347629]
  55. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). [PMID: 19451168]
  56. Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013). [PMID: 23471004]
  57. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). [PMID: 20513432]
  58. Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). [PMID: 31470794]
  59. Yoon, S., Xuan, Z., Makarov, V., Ye, K. & Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 19, 1586–1592 (2009). [PMID: 19657104]
  60. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011). [PMID: 21527027]
  61. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44, e131 (2016). [PMID: 27270079]
  62. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014). [PMID: 24633410]
  63. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013). [PMID: 23618408]
  64. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010). [PMID: 20436464]
  65. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). [PMID: 22955987]
  66. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). [PMID: 16199517]
  67. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008). [PMID: 18798982]

MeSH Term

Ascites
Cell Line, Tumor
Humans
Peritoneal Neoplasms
Stomach Neoplasms
Transforming Growth Factor beta

Chemicals

Transforming Growth Factor beta