Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions.

Jing Wang, Jianguang Li, Zaiyuan Li, Bo Liu, Lili Zhang, Dongliang Guo, Shilian Huang, Wanqiang Qian, Li Guo
Author Information
  1. Jing Wang: Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China.
  2. Jianguang Li: Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China.
  3. Zaiyuan Li: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  4. Bo Liu: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  5. Lili Zhang: Weifang Institute of Technology, Weifang, China.
  6. Dongliang Guo: Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China.
  7. Shilian Huang: Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China.
  8. Wanqiang Qian: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  9. Li Guo: Peking University Institute of Advanced Agricultural Sciences, Weifang, China.

Abstract

Longan (Dimocarpus longan) is a subtropical fruit best known for its nutritious fruit and regarded as a precious tonic and traditional medicine since ancient times. High-quality chromosome-scale genome assembly is valuable for functional genomic study and genetic improvement of longan. Here, we report a chromosome-level reference genome sequence for longan cultivar JDB with an assembled genome of 455.5 Mb in size anchored to fifteen chromosomes, representing a significant improvement of contiguity (contig N50 = 12.1 Mb, scaffold N50 = 29.5 Mb) over a previous draft assembly. A total of 40 420 protein-coding genes were predicted in D. longan genome. Synteny analysis suggests longan shares the widespread gamma event with core eudicots, but has no other whole genome duplications. Comparative genomics showed that D. longan genome experienced significant expansions of gene families related to phenylpropanoid biosynthesis and UDP-glucosyltransferase. Deep genome sequencing analysis of longan cultivars identified longan biogeography as a major contributing factor for genetic diversity, and revealed a clear population admixture and introgression among cultivars of different geographic origins, postulating a likely migration trajectory of longan overall confirmed by existing historical records. Finally, genome-wide association studies (GWAS) of longan cultivars identified quantitative trait loci (QTL) for six different fruit quality traits and revealed a shared QTL containing three genes for total soluble solid and seed weight. The chromosome-level reference genome assembly, annotation and population genetic resource for D. longan will facilitate the molecular studies and breeding of desirable longan cultivars in the future.

Keywords

References

  1. Gigascience. 2017 May 1;6(5):1-14 [PMID: 28368449]
  2. Methods Mol Biol. 2019;1962:65-95 [PMID: 31020555]
  3. Methods Mol Biol. 2020;2090:49-65 [PMID: 31975163]
  4. Nat Protoc. 2006;1(5):2320-5 [PMID: 17406474]
  5. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  6. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  7. Hortic Res. 2021 Apr 1;8(1):70 [PMID: 33790265]
  8. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  9. PLoS Genet. 2014 Jul 10;10(7):e1004459 [PMID: 25010663]
  10. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  11. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  12. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  13. Gigascience. 2021 Feb 16;10(2): [PMID: 33594436]
  14. Plant J. 2021 Jul;107(1):149-165 [PMID: 33866633]
  15. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  16. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  17. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  18. Plant Sci. 2011 Oct;181(4):379-86 [PMID: 21889043]
  19. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 [PMID: 15980438]
  20. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  21. J Integr Plant Biol. 2016 Dec;58(12):983-996 [PMID: 27762074]
  22. Genes (Basel). 2020 Sep 24;11(10): [PMID: 32987959]
  23. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  24. BMC Plant Biol. 2020 Oct 7;20(1):459 [PMID: 33028214]
  25. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  26. Plant Sci. 2020 Sep;298:110579 [PMID: 32771140]
  27. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  28. BMC Plant Biol. 2019 Sep 12;19(1):401 [PMID: 31510935]
  29. Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
  30. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  31. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  32. PLoS Genet. 2012;8(11):e1002967 [PMID: 23166502]
  33. Nature. 2016 Sep 29;537(7622):629-633 [PMID: 27602511]
  34. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  35. Plant J. 2012 Sep;71(5):836-49 [PMID: 22540321]
  36. Stat Comput. 2011 Jan 4;21(2):261-273 [PMID: 21359052]
  37. IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):645-56 [PMID: 24091398]
  38. Bioinformatics. 2020 May 1;36(9):2896-2898 [PMID: 31971576]
  39. Nat Commun. 2015 Feb 05;6:6258 [PMID: 25651972]
  40. J Agric Food Chem. 2017 May 24;65(20):4121-4132 [PMID: 28489361]
  41. Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
  42. Mol Plant Pathol. 2002 Sep 1;3(5):371-90 [PMID: 20569344]
  43. Molecules. 2019 Mar 26;24(6): [PMID: 30917573]
  44. Nat Commun. 2020 May 26;11(1):2629 [PMID: 32457405]
  45. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  46. Genome Biol. 2001;2(2):REVIEWS3004 [PMID: 11182895]
  47. New Phytol. 2017 Jan;213(2):900-915 [PMID: 27588563]

Word Cloud

Similar Articles

Cited By